Постановка задачи аппроксимации по МНК. Условия наилучшего приближения.
Если набор экспериментальных данных получен со значительной погрешностью, то интерполяция не только не требуется, но и нежелательна! Здесь требуется построить кривую, которая воспроизводила бы график исходной экспериментальной закономерности, т.е. была бы максимально близка к экспериментальным точкам, но в то же время была бы нечувствительна к случайным отклонениям измеряемой величины.
Введем непрерывную функцию φ(x) для аппроксимации дискретной зависимости f(xi), i = 0…n. Будем считать, что φ(x) построена по условию наилучшего квадратичного приближения, если
. (1)
Весу ρ для i-й точки придают смысл точности измерения данного значения: чем больше ρ, тем ближе аппроксимирующая кривая «притягивается» к данной точке. В дальнейшем будем по умолчанию полагать ρ = 1 для всех точек.
Рассмотрим случай линейной аппроксимации:
φ(x) = c0φ0(x) + c1φ1(x) + … + cmφm(x), (2)
где φ0…φm – произвольные базисные функции, c0…cm – неизвестные коэффициенты, m < n. Если число коэффициентов аппроксимации взять равным числу узлов, то среднеквадратичная аппроксимация совпадет с интерполяцией Лагранжа, при этом, если не учитывать вычислительную погрешность, Q = 0.
Если известна экспериментальная (исходная) погрешность данных ξ, то выбор числа коэффициентов, то есть величины m, определяется условием:
. (3)
Иными словами, если , число коэффициентов аппроксимации недостаточно для правильного воспроизведения графика экспериментальной зависимости. Если , многие коэффициенты в (2) не будут иметь физического смысла.
Для решения задачи линейной аппроксимации в общем случае следует найти условия минимума суммы квадратов отклонений для (2). Задачу на поиск минимума можно свести к задаче поиска корня системы уравнений , k = 0…m. (4).
Подстановка (2) в (1), а затем расчет (4) приведет в итоге к следующей системе линейных алгебраических уравнений:
Далее следует решить полученную СЛАУ относительно коэффициентов c0…cm. Для решения СЛАУ обычно составляется расширенная матрица коэффициентов, которую называют матрицей Грама, элементами которой являются скалярные произведения базисных функций и столбец свободных коэффициентов:
,
где , , j = 0…m, k = 0…m.
После того как с помощью, например, метода Гаусса найдены коэффициенты c0…cm, можно построить аппроксимирующую кривую или вычислить координаты заданной точки. Таким образом, задача аппроксимации решена.
Дата добавления: 2021-09-07; просмотров: 330;