Потери при соединении волокон
Для соединения различных частей оптических телекоммуникационных систем производят в основном кабели стандартной длины, например 2, 4, 6 км. Для информационных систем всегда существует необходимость соединения строительных длин кабеля между собой, так как только на коротких участках длиной 2 — 6 км можно использовать одну строительную длину кабеля. ВОЛС большой длины состоят из некоторого количества строительных длин по 2-6 км каждая, которые могут соединяться между собой различными способами [10]:
• постоянные соединения — это сварные соединения, используемые в основном для соединения волокон в сетях большой протяженности, и механические соединения, преимущественно используемые в сетях локальной инсталляции;
• полупостоянные соединения, преимущественно используемые в сетях, где абоненты перемещают оборудование или, где вся сеть постоянно перестраивается, т.е. в локальных сетях LAN, а также при установлении временных соединений во время организации кабельных вставок во время аварий на магистральных и соединительных ВОЛС.
Разъемный соединитель (разъем, коннектор) — устройство для подключения волокна к источнику, детектору или к другому волокну. В его конструкции заложена возможность многократного подключения и отключения волокна. Неразъемный соединитель (сплайс,«сварка») предназначен для постоянного соединения одного волокна с другим. Некоторые производители предлагают многоразовые сплайсы, позволяющие разрывать соединение или переконфигурировать волоконную цепь.
Ключевым моментом волоконно-оптического соединения является точное размещение сердцевин ОВ (или несущих свет областей в одномодовом волокне) для обеспечения максимально полной передачи света от одного волокна к другому. При этом необязателен непосредственный контакт между волокнами. Условие точного размещения тонких волокон (одно относительно другого) ставит перед производителями соединителей сложную задачу. Например, при соединении двух ОВ с диаметром оболочки 125 мкм их юстировку в процессе сварки выполняют с точностью в несколько тысячных миллиметра и даже лучше. Поэтому требования, предъявляемые к соединителям и коннекторам, могут быть сформулированы в виде:
• установка соединителей должна приводить к небольшим потерям оптической мощности на соединении;
• соединители должны легко и быстро устанавливаться, не требуя дорогостоящего оборудования или длительного обучения персонала;
• разъем должен гарантировать многократное подключение и отключения без каких-либо изменений уровня потерь;
• потери должны быть регламентированы вне зависимости от времени установки соединителя;
• цена соединителей и оборудования для их установки должна быть невысокой.
Исходя из этих факторов, техника соединения методом сварки используется, в основном, на сетях большой протяженности, где требования к качеству соединения и его затуханию особенно строги. Механические соединители используются, как правило, при прокладке оптического кабеля внутри помещений. Безусловно, потери, вносимые сварным соединением, значительно меньше, нежели при механическом соединении, а дорогой коннектор обладает меньшим затуханием, чем дешевый.
Согласно накопленного опыта [10] требования к потерям на соединителе следующие:
• 0,2 дБ и менее для телекоммуникационных систем или для дальних линий связи;
• 0,3-1 дБ для соединителей, используемых в контуре внутри здания: для локальных сетей или линий управления производством;
• 1-3 дБ для соединителей в системах, где такого рода потери приемлемы и основным соображением выступает низкая стоимость. В таких системах, как правило, используется пластиковое волокно.
Как известно, существуют три причины возникновения потерь в волоконно-оптическом соединении:
• внутренние причины, связанные с нестабильностью параметров самого волокна;
• внешние причины, связанные непосредственно с соединителем;
• системный фактор, отражающий параметры системы в целом.
Внутренние причины. Рассматривая соединение одного волокна с другим исходят из того, что оба волокна идентичны. Однако обычно это не так. Производство волокон оставляет некоторые допуски на воспроизводимость их параметров, варьирующихся в установленных пределах вблизи номинальных (специфицированных) значений. Потери в волокне обусловлены различием: диаметров модового поля, числовых апертур, диаметров сердцевины, диаметров оболочек, некруглостью сердцевины и/или оболочки; неконцентричностью сердцевины/оболочки.
На рис. 6.21 схематически представлены вариации параметров волокон, наиболее важных с точки зрения их влияния на потери.
Если диаметр сердцевины передающего волокна отличается от диаметра сердцевины приемного волокна, диаметр модового поля тоже будет шире или уже. В этом случае затухание сигнала изменяется в обоих направлениях, и определяется опытным путем с помощью рефлектометра при прохождении сигнала в одном из направлений. Соединение волокон с различными диаметрами модового поля дают неожиданные результаты в затухании сигнала (рис. 6.21 а).
Если передающее волокно имеет большую числовую апертуру, чем приемное волокно, то возникают потери. Свет будет излучаться в оболочку приемного волокна (рис 6.21 б). Когда NAпер, передающего волокна больше, чем NAприем приемного волокна, потери можно рассчитать по формуле [10]:
. (6.8)
Когда диаметр сердцевины передающего волокна больше, чем диаметр сердцевины приемного волокна, будут происходить потери, обусловленные тем, что некоторое количество света из передающего волокна вытекает в оболочку приемного волокна. Различие в диаметрах сердцевин также влияет на диаметр модового поля (рис. 6.21 в). Потери, обусловленные различием диаметров сердцевин соединяемых волокон, рассчитываются по формуле:
. (6.9)
При производстве волокна допуски на диаметр оболочки составляют ±2 мкм. Это означает, что волокно с диаметром 123 мкм может соединяться с волокном диаметром 127 мкм. При соединении методом сварки вязкость расплава обеспечивает относительно правильно съюстированные друг относительно друга волокна, но при механическом или полупостоянном соединении эти различия могут дать значительное возрастание потерь, особенно для одномодовых волокон (рис. 6.21 г). Особо большие потери возникают при соединении волокон с максимально большим различием диаметров оболочек. Для волокон с допуском 125±2 мкм максимальные потери составляют 1,4 дБ. Если допуск является ниже 125±1 мкм, максимальные потери снижаются до 0,7 дБ. Если кабели, содержащие одномодовые оптические волокна, оконцованны коннекторами, волокна и коннекторы должны быть очень точно съюстированны друг с другом, чтобы снизить потери из-за различия диаметров оболочек.
Некруглость сердцевины и оболочки могут оказывать такое же влияние, как и различие в диаметре сердцевины. Это влияние особенно очевидно в полупостоянных соединителях, где коннектор не имеет направляющих пазов, например SMA коннектор. В результате некруглость приведет к потерям во время каждого соединения (рис. 6.21 д).
Сердцевина волокна должна размещаться прямо в центре волокна. Неконцентричность приведет к потерям в соединении (рис. 6.21 е).
Внешние причины. Сами соединители также привносят определенные потери в соединение. Если центральные оси двух волокон недостаточно точно совмещены, потери возникают даже при отсутствии вариаций характеристик волокон.
Четыре основные причины возникновения потерь в соединителе, которые необходимо контролировать, это радиальное смещение, продольное смещение, угловое рассогласование ориентации осей, гладкость поверхности скола.
Радиальное смещение. Волокно в соединителе должно размещаться вдоль его центральной оси. Если центральная ось одного волокна не совпадает с центральной осью другого, то неизбежно возникновение потерь. Зависимость потерь от отношения абсолютной величины смещения L к диаметру волокна 2a представлена на графике рис. 6.22. Из графика видно, что относительное смещение в 10 % приводит к потерям на уровне 0,5 дБ. Для волокна с диаметром сердцевины 50 мкм относительное смещение в 10 % означает реальное смещение на уровне в 5 мкм, что, в свою очередь, соответствует смещению в каждом соединителе на 2,5 мкм. Очевидно, что контроль бокового смещения особенно затруднен в волокнах малого диаметра. Производители соединителей стремятся ограничить смещение до уровня менее 5 % от диаметра ядра.
Продольное смещение. Соединение двух волокон, разделенных небольшим зазором, подвержено двум видам потерь (рис. 6.23). Первый — это френелевское отражение, связанное с разнитей показателей преломления волокон и среды в зазоре (обычно воздуха). Френелевское отражение происходит как на выходе из первого волокна, так и на входе во второе волокно. В стеклянных волокнах, разделенных воздушным зазором, потери от френелевского отражения составляют около 0,34 дБ. Френелевские потери могут быть существенно снижены при использовании в зазоре жидкости с согласованным показателем преломления. Такая жидкость представляет собой либо оптически прозрачную среду, либо гель, имеющий показатель преломления, близкий к показателю преломления стекла.
Второй вид потерь в многомодовых волокнах связан с потерей мод высокого порядка при прохождении светом зазора и на входе в сердцевину второго волокна. Свет, выходящий из первого волокна, распространяется в некотором конусе. Величина потерь, связанных с этим эффектом, зависит от величины NA волокон. Волокно с большим значением NA не допускает столь большого зазора между волокнами при том же уровне потерь, что волокно с меньшим значением NA.
Для уменьшения потерь волокна следует соединять вплотную. В большинстве неразъемных соединителей волокна действительно устанавливаются вплотную. В разъемах иногда нужен небольшой зазор для предотвращения появления царапин на сколе при подключении. Волокна, прижатые друг к другу с большим усилием при подключении соединителя, могут даже потрескаться. Поэтому некоторые соединители сконструированы таким образом, чтобы был небольшой зазор между волокнами, в других используется фиксированное прижимающее давление для мягкого контакта волокон, исключающего появление повреждений. Физический контакт волокон часто необходим для регулирования обратных, отражений, которые обсуждаются ниже в этой главе.
Угловое рассогласование ориентации осей. Сколы обработанных волокон должны быть перпендикулярны осям волокон и параллельны друг другу при соединении. Потери (рис. 6.24) связаны с угловым рассогласованием ориентации волокон относительно друг друга. Снова, как и ранее, уровень потерь определяется NA волокон. Влияние NA в данном случае противоположно эффекту наличия зазора между волокнами. Большее значение NA допускает большее угловое рассогласование для ограничения потерь на том же уровне, что и при меньшем значении апертуры.
При правильном использовании соединителя угловое рассогласование ориентации практически исключается, так что связанные с этим эффектом потери существенно меньше потерь, связанных с боковым смещением. При скалывании волокна и полировке стекла контролируется перпендикулярность поверхности по отношению к оси волокна.
Гладкость поверхности скола. Поверхность скола должна быть гладкой и не содержать трещин, выбоин и заусениц (рис. 6.25). Неровная поверхность разрушает геометрическую картину световых лучей и рассеивает их, что затрудняет ввод лучей во второе волокно [10].
Рис. 6.25. Возможные поверхности скола ОВ
Потери в системе. Потери, возникающие в соединении, могут быть связаны не только с волокном или соединителем, но и непосредственно с системой. Первоначально волокно может быть переполнено или полностью насыщено излучением источника света, при этом свет переносится также в модах оптической оболочки и в модах высокого порядка. С расстоянием эти моды будут покидать систему. При достижении равновесного модового состава волокно со сглаженным профилем показателя преломления имеет меньшее значение NA и меньшую активную площадь сердцевины, используемую для переноса света.
Рассмотрим соединитель, подключенный к источнику [1]. Волокно на передающей стороне соединителя может быть переполнено модами. Большая часть энергии света, находящегося в модах оптической оболочки и модах высокого порядка, не попадает во второе волокно, хотя и присутствует в соединении. В условиях равновесного модового состава свет в таких модах отсутствует, поэтому энергия заключенного света не теряется в соединении.
Рассмотрим принимающую часть волокна. Некоторая порция света после прохождения соединения волокон оказывается в модах оптической оболочки и в модах высокого порядка принимающего волокна. Если измерить принимаемую оптическую мощность на небольшом расстоянии от соединения, то эти моды еще присутствуют в общем потоке. На некотором расстоянии от соединения они теряются, так что их присутствие является временным.
Аналогичные эффекты наблюдаются, если точка соединения находится далеко от источника и в ней уже достигнуто состояние равновесного модового состава. Поскольку активная площадь волокна со сглаженным профилем уже уменьшена, боковое смещение не оказывает существенного влияния, особенно когда принимающее волокно имеет ограниченную длину. Свет снова переносится в модах высокого порядка и в модах оптической оболочки. Данные моды теряются в протяженном принимающем волокне.
Итак, передаточная характеристика соединителя зависит от модовых условий и положения соединителя в системе (состояние отдельной моды изменяется вдоль волокна). Проводя оценку затухания волоконно-оптического соединителя, надо принимать во внимание условия по обе стороны соединения. Существует четыре различных условия [1]:
• короткий передающий сегмент, короткий принимающий;
• короткий передающий сегмент, длинный принимающий;
• длинный передающий сегмент, короткий принимающий;
• оба сегмента длинные.
При заданных постоянных параметрах передаточная характеристика соединителя зависит от условий испускания и приема света. Например, в серии измерений, проведенных с одним соединителем при большой длине передающей части волокна, потери составляли 0,4 — 0,5 дБ, при небольшой длине 1,3 — 1,4 дБ. Таким образом, разница в 1 дБ может возникать из-за различия в условиях приема света.
Величина потерь в соединении многомодовых ОВ определяется [11] из выражению вида:
, (6.10)
где αd — потери, обусловленные разницей в диаметрах сердцевины d1 и d2 соединяемых волокон (6.9); αNA — потери, обусловленные разницей числовых апертур волокон (6.8); αC –потери, обусловленные поперечным радиальным смещением L осей волокон; αθ — потери, обусловленные угловым смещением ОВ; αF— потери, обусловленные несогласованием показателей преломления — френелевскими потерями.
Потери αC, αθ определяются выражениями вида [11]:
, (6.11)
, (6.12)
где Вθ — коэффициент передачи соединения для многомодовых ОВ.
При ступенчатом и градиентном ППП этот коэффициент определяется выражениями вида:
, (6.13)
, (6.14)
где к=п1/п0 и Δ=(п1-п2)/п1; п0— показатель преломления воздуха.
Потери, обусловленные френелевским рассеянием, определяются выражением вида:
, (6.15)
Величина потерь в соединении одномодовых ОВ определяется [11] по выражению вида:
, (6.16)
где αW – потери, обусловленные несогласованностью диаметров модовых полей волокон.
Эти потери могут быть определены по выражению вида [11]:
, (6.17)
где w1 и w2 — диаметр модового поля первого и второго ОВ, соответственно.
Величина wi может быть приближенно определена при Гауссовом распределении поля по выражению:
(6.18)
Потери αС и αθ могут быть определены из выражений:
, (6.19)
, (6.20)
Не все факторы одинаково влияют на потери в соединениях при разных типах ОВ и соединителей [11]. Для многомодовых ОВ с градиентным ППП наиболее значимыми являются факторы, определяемые разницей диаметров сердцевин и разницей числовых апертур волокон, радиальным смещением и непараллельностью осей ОВ.
Для одномодовых ОВ по важности влияния на суммарную величину потерь в соединении следует отметить поперечное и угловое смещения осей, деформацию сердцевины, несогласованность размеров модовых полей ОВ.
Дата добавления: 2019-12-09; просмотров: 598;