Рекурсивные цифровые фильтры


 

Рекурсивный фильтр реализует алгоритмы обработки входного сигнала, описываемый уравнением (9.2). Применяя Z-преобразования к левой и правой части этого уравнения получим:

 

,

Здесь ,

Тд - период дискретизации.

 

Передаточной функцией дискретной системы называется отношение Z образов выходного и входного сигналов [1]:

(9.5)

Которая представляет собой отношение двух полиномов по степеням комплексной переменной Z-1 . При этом должно выполняться условие M≤N, которое определяет порядок полиномов и порядок цифрового фильтра (N). Если M > N, уравнение (9.5) преобразуется к сумме двух передаточных функций. Первая – соответствует нерекурсивной передаточной функции (M – N)-го порядка, а вторая – рекурсивной функции, порядок числителя которой всегда меньше N.

По передаточной функции можно легко составить структурную схему дискретной системы, т.е. ЦФ. Передаточную функцию ЦФ (9.5) можно также выразить в виде отношения полиномов A(z) и B(z) по положительным степеням Z, умножив числитель и знаменатель выражения (9.5) на Z-N . В развернутом виде уравнение передаточной функции ЦФ будет выглядеть так:

 

, (9.6)

 

при условии, что M≤N. В этом выражении коэффициенты полиномов a0 и b0 играют масштабирующую роль и в общем случае могут быть приравнены к единице.

Передаточная функция в форме (9.6) в точках нулей H(zoi) = 0, а в точках полюсов H(zpi) = ∞. Где , - есть нули и полюса функций, а i = 1, 2 … N – есть номер нуля или полюса; N – порядок фильтра. Нули функции передачи могут быть вещественными, либо составлять комплексно-сопряженные пары. То же можно сказать и о полюсах. Коэффициенты полиномов всегда вещественны. Нули и полюса могут быть простыми и кратными.

Если известны нули и полюса передаточной функции, то ее можно представить в виде нуль-полюсной форме, разложив числитель и знаменатель на множители:

 

(9.7)

 

Могут присутствовать коэффициенты a0 и b0, если они не равны единице.

Выражение передаточной функции (9.6) может быть так же представлено в виде суммы однополюсных или n-полюсных простых дробей [3].

Выражение передаточной функции в форме (9.7) упрощает поиск аналитических выражений импульсных характеристик РФ. Для получения частотной характеристики РФ на основе любого вида передаточной характеристики Н(z) необходимо осуществить замену z = eТд. Например, из выражения (9.5) получим:

 

, (9.8)

 

Чему соответствует каноническая форма реализации РФ.

 

 

 

Рис. 9.4 Каноническая форма реализации ЦФ

 

Из этого же выражения можно найти АЧХ и ФЧХ фильтра, определив модуль и фазу частотной характеристики H(jω).

По расположению нулей и полюсов на комплексной плоскости можно судить об устойчивости РФ. Полюса устойчивого РФ не превышают по модулю единицу (|zpi|<1) и находятся внутри круга единичного радиуса (для устойчивого аналогового фильтра полюса находятся в левой полуплоскости).

Для расчета АЧХ и ФЧХ РФ используются выражения передаточной функции, соответствующие конкретной форме реализации.

 



Дата добавления: 2017-05-02; просмотров: 2794;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.