Измерение заряда электрона
Наиболее прямое определение заряда электрона было произведено в опытах Р. Милликена, в которых измерялись очень малые заряды, возникавшие на мелких частицах. Идея этих опытов заключалась в следующем. Согласно основным представлениям электронной теории заряд какого-либо тела возникает в результате изменения содержащегося в нем числа электронов (или положительных ионов, заряд которых равен или кратен заряду электрона). Вследствие этого заряд любого тела должен изменяться только скачкообразно и притом такими порциями, которые содержат целое число зарядов электрона. Поэтому установив на опыте дискретный характер изменения электрического заряда, можно получить тем самым и подтверждение существования электронов, и определить заряд одного электрона (элементарный заряд).
Понятно, что в подобных опытах измеряемые заряды должны быть очень малыми и состоять лишь из небольшого числа зарядов электрона. В противном случае добавление или отнятие одного электрона будет приводить только к небольшому в процентном отношении изменению общего заряда и поэтому может легко ускользнуть от наблюдателя вследствие неизбежных ошибок при измерении заряда.
В опытах было обнаружено, что заряд частичек действительно изменяется скачками, причем изменения заряда всегда были кратны определенному конечному заряду.
Схема опыта Милликена показана на рис. 249. Основной частью прибора является тщательно изготовленный плоский конденсатор, пластины которого присоединяются к источнику напряжения в несколько тысяч вольт. Напряжение между пластинами можно изменять и точно измерять. Мелкие капельки масла, получаемые с помощью специального пульверизатора, попадают через отверстие в верхней пластине в пространство между пластинами. Движение отдельной капельки масла наблюдают в микроскоп. Конденсатор заключен в защитный кожух, поддерживаемый при неизменной температуре, предохраняющей капельки от конвекционных токов воздуха.
Капельки масла при распылении заряжаются, и поэтому на каждую действуют две силы: результирующая силы тяжести и выталкивающей (архимедовой) силы и сила, вызванная электрическим полем.
ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ
Электронная проводимостьметаллов. Прохождение тока через металлы (проводники первого рода) не сопровождается химическим изменением их. Это обстоятельство заставляет предполагать, что атомы металла при прохождении тока не перемещаются от одного участка проводника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рикке (1845 —1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминиевый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3 000 000 Кл). Производя затем тщательный анализ места соприкосновения меди и алюминия, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током.
Каким же образом происходит перенос зарядов при прохождении тока через металл?
Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положительные заряды, входящие в состав каждого атома, существенно отличаются друг от друга. Положительный заряд связан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заряды — электроны, обладающие определенным зарядом и массой, почти в 2000 раз меньшей массы самого легкого атома — водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заряженный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов металла, образуя его кристаллическую решетку (см. том I).
Одним из наиболее убедительных явлений, обнаруживающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что электроны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с веществом металла. Так как причпрохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электричества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси *), но не опубликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Папалекси.
При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладающие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные помехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции некоторое время продолжают двигаться вперед.
Таким образом, краткое время после остановки проводника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуждения справедливы, то после внезапной остановки проводника надо ожидать появления в нем кратковременного тока. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направлении будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий направление справа налево. Возникающий ток зависит от зарядов и способности их носителей более или менее долго сохранять по инерции свое движение, несмотря на помехи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предположение о существовании в металле свободных зарядов, но и определить сами заряды, их знак и массу их носителей (точнее, отношение заряда к массе e/m).
В практическом осуществлении опыта оказалось более удобным использовать не поступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолированные друг от друга полуоси 00, укреплена проволочная спираль /. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») присоединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормозилась. Опыт действительно обнаружил, что при этом в гальванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицательные заряды. Измерив заряд, переносимый этим кратковременным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8∙1011 Кл/кг, что хорошо совпадает со значением такого отношения для электронов, определенным другими способами. Итак, опыты показывают, что в металлах имеются свободные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упорядоченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике).
Строение металлов. Как свободные электроны, входящие в состав металла, так и его ионы находятся в непрерывном беспорядочном движении. Энергия этого движения и представляет собой внутреннюю энергию тела. Движение ионов, образующих кристаллическую решетку, состоит лишь в колебаниях около своих положений равновесия. Свободные же электроны могут перемещаться по всему объему металла.
Если внутри металла нет электрического поля, то движение электронов совершенно хаотично; в каждый момент скорости различных электронов различны и имеют всевозможные направления (рис. 143, а). Электроны в этом смысле подобны обычному газу, и поэтому их часто называют электронным газом. Такое тепловое движение не вызовет, очевидно, никакого тока, так как вследствие полной хаотичности в каждом направлении будет двигаться столько же электронов, сколько и в противоположном, и поэтому суммарный заряд, переносимый через любую площадку внутри металла, будет равен нулю.
Дело, однако, изменится, если мы приложим к концам проводника разность потенциалов, т. е. создадим внутри металла электрическое поле. Пусть напряженность поля равна E. Тогда на каждый из электронов действует сила eЕ (е — заряд электрона), направленная вследствие отрицательности заряда электронов противоположно полю. Благодаря этому электроны получат дополнительные скорости, Направленные в одну сторону (рис. 143, б). Теперь уже движение электронов не будет вполне хаотичным: наряду с беспорядочным тепловым движением электронный газ будет перемещаться как целое, и поэтому возникнет электрический ток. Выражаясь образно, можно сказать, что ток в металлах представляет собой «электронный ветер», вызванный внешним полем. Причина электрического сопротивления. Теперь мы можем понять, почему металлы оказывают сопротивление электрическому току, т. е. почему для поддержания длительного тока нужно все время поддерживать разность потенциалов на концах металлического проводника. Если бы электроны не испытывали никаких помех в своем движении, то, будучи приведены в упорядоченное движение, они двигались бы по инерции, без действия электрического поля, неограниченно долго. Однако в действительности электроны испытывают соударения с ионами. При этом электроны, обладавшие перед соударением некоторой скоростью упорядоченного движения, после соударения будут отскакивать в произвольных, случайных направлениях, и упорядоченное движение электронов (электрический ток) будет превращаться в беспорядочное (тепловое) движение: после устранения электрического поля ток очень скоро исчезнет. Для того чтобы получить длительный ток, нужно после каждого соударения вновь и вновь гнать электроны в определенном направлении, а для этого нужно, чтобы на электроны все время действовала сила, т. е. чтобы внутри металла было электрическое поле.
Чем большая разность потенциалов поддерживается на концах металлического проводника, тем сильнее внутри него электрическое поле, тем больше ток в проводнике. Расчет, которого мы не приводим, показывает, что разность потенциалов и сила тока должны быть строго пропорциональны друг другу (закон Ома).
Двигаясь под действием электрического поля, электроны приобретают некоторую кинетическую энергию. При соударениях эта энергия частично передается ионам решетки, отчего они приходят в более интенсивное тепловое движение. Таким образом, при наличии тока все время происходит переход энергии упорядоченного движения электронов (тока) в энергию хаотического движения ионов и электронов, которая представляет собой внутреннюю энергию тела; а это значит, что внутренняя энергия металла увеличивается. Этим объясняется выделение джоулева тепла.
Резюмируя, можно сказать, что причина электрического сопротивления заключается в том, что электроны при своем движении испытывают соударения с ионами металла. Эти соударения производят такой же результат, как и действие некоторой постоянной силы трения, стремящейся тормозить движение электронов.
Различие в проводимости разных металлов обусловлено некоторыми различиями в числе свободных электронов в единице объема металла и в условиях движения электронов, что сводится к различию в средней длине свободного пробега, т. е. пути, проходимого в среднем электроном между двумя соударениями с ионами металла. Однако эти различия не очень значительны, вследствие чего проводимость одних металлов отличается от проводимости других всего лишь в несколько десятков раз; в то же время проводимость даже худших из металлических проводников в сотни тысяч раз больше проводимости хороших электролитов и в миллиарды раз превосходит проводимость полупроводников.
Явление сверхпроводимости означает, что в металле возникли условия, при которых электроны не испытывают сопротивления своему движению. Поэтому для поддержания длительного тока в сверхпроводнике не нужно наличия разности потенциалов. Достаточно каким-либо толчком привести электроны в движение, и тогда ток в сверхпроводнике будет существовать и после устранения разности потенциалов.
Работа выхода. Свободные электроны находятся внутри металла в непрерывном тепловом движении. Однако, несмотря на это, они не разлетаются из металла. Это свидетельствует о том, что есть какие-то силы, препятствующие их вылету, т. е. что на электроны, стремящиеся выйти за поверхность металла, в поверхностном слое действует электрическое поле, направленное от металла наружу (электроны отрицательны). Это значит, что при прохождении электрона через поверхностный слой металла силы, действующие на электрон в этом слое, совершают отрицательную работу —А (здесь А>0), а следовательно, между точками внутри металла и снаружи имеется некоторое напряжение, называемое напряжением выхода.
Из сказанного следует, что для удаления электрона из металла в вакуум нужно совершить против сил, действующих в поверхностном слое, положительную работу А, называемую работой выхода. Эта величина зависит от природы металла.
Между работой выхода и потенциалом выхода имеется очевидное соотношение
A = eU,
где e — заряд электрона (точнее, абсолютное значение заряда электрона, равное элементарному заряду). Поэтому работу выхода обычно записывают в виде eq>.
Работу еср против сил в поверхностном слое электрон может совершить за счет запаса кинетической энергии. Если кинетическая энергия меньше работы выхода, он не сможет проникнуть через поверхностный слой и останется внутри металла. Таким образом, условие, при котором электрон может вылететь из металла, имеет вид
Здесь т — масса электрона, vn — нормальная (перпендикулярная к поверхности) составляющая его скорости, eU — работа выхода.
При комнатной температуре средняя энергия теплового движения электронов в металле в несколько десятков раз меньше работы выхода; поэтому практически все электроиы удерживаются полем, имеющимся в поверхностном слое, внутри металла.
Работу выхода обычно измеряют не в джоулях, а в электронвольтах (эВ). Один электронеольт есть работа, совершаемая силами поля над зарядом, равным заряду электрона (т. е. над элементарным зарядом е), при прохождении им напряжения один вольт:Испускание электронов накаленными телами.Тепловое движение электронов в металле имеет беспорядочный характер, так что скорости отдельных электронов могут значительно отличаться друг от друга, подобно тому как это имеет место для молекул газа. Это значит, что внутри металла всегда найдется некоторое число быстрых электронов, способных прорваться сквозь поверхность. Иными словами, если принятая нами картина строения металла верна, то должно происходить «испарение» электронов, подобное испарению жидкостей.
Однако при комнатных температурах условие (89.2) выполняется только для ничтожной доли электронов металла, и испарение электронов настолько слабо, что его обнаружить невозможно. Дело изменится, если нагреть металл до очень высокой температуры (1500—2000 °С). В этом случае тепловые скорости увеличиваются, число вылетающих электронов возрастает, и испарение их можно легко наблюдать на опыте. Для подобного опыта может служить лампа Л (рис. 144), содержащая, кроме нити накала К (например, вольфрамовой), еще дополнительный электрод Л. Воздух из лампы тщательно выкачан, чтобы не осложнять явления участием ионов воздуха. Лампа соединена с батареей £i и гальванометром Г так, что отрицательный полюс батареи соединен с нитью накала.
При холодной нити гальванометр не показывает тока, так как между катодом и анодом нет ни ионов, ни электронов, которые могли бы переносить заряды. Если, однако, накалить нить при помощи вспомогательной батареи Б2 и постепенно увеличивать ток накала, то при белом калении нити в цепи появляется ток. Этот ток образуется испаряющимися из нити электронами, которые под действием приложенного электрического поля движутся от нити К к электроду А. Число электронов, испускаемых с единицы поверхности раскаленного катода, очень сильно зависит от его температуры и от материала, из которого он сделан (работа выхода). Поэтому наблюдаемый ток очень быстро возрастает с повышением температуры нити.
Если присоединить полюсы батареи Б1 так, чтобы нить оказалась соединенной с положительным полюсом, то тока в цепи не будет, как бы сильно мы ни нагревали нить. Это происходит потому, что электрическое поле теперь стремится двигать электроны от А к К и поэтому возвращает испарившиеся электроны обратно в нить накала. Этот опыт доказывает также, что из металлов испаряются только отрицательные электроны, но не положительные ионы, которые прочно связаны в кристаллической решетке металла. Описанное явление, носящее название термоэлектронной эмиссии, нашло себе разнообразные и важные применения.
Дата добавления: 2017-05-02; просмотров: 3357;