Измерение заряда электрона


 

Наиболее прямое определение заряда электрона было произ­ведено в опытах Р. Милликена, в которых измерялись очень ма­лые заряды, возникавшие на мелких частицах. Идея этих опы­тов заключалась в следующем. Согласно основным представле­ниям электронной теории заряд какого-либо тела возникает в результате изменения содержащегося в нем числа электронов (или положительных ионов, заряд которых равен или кратен заряду электрона). Вследствие этого заряд любого тела должен изменяться только скачкообразно и притом такими порциями, которые содержат целое число зарядов электрона. Поэтому уста­новив на опыте дискретный характер изменения электрического заряда, можно получить тем самым и подтверждение существо­вания электронов, и определить заряд одного электрона (эле­ментарный заряд).

Понятно, что в подобных опытах измеряемые заряды долж­ны быть очень малыми и состоять лишь из небольшого числа зарядов электрона. В противном случае добавление или отня­тие одного электрона будет приводить только к небольшому в процентном отношении изменению общего заряда и поэтому мо­жет легко ускользнуть от наблюдателя вследствие неизбежных ошибок при измерении заряда.

В опытах было обнаружено, что заряд частичек действитель­но изменяется скачками, причем изменения заряда всегда были кратны определенному конечному заряду.

Схема опыта Милликена показана на рис. 249. Основной ча­стью прибора является тщательно изготовленный плоский кон­денсатор, пластины которого присоединяются к источнику на­пряжения в несколько тысяч вольт. Напряжение между пласти­нами можно изменять и точно измерять. Мелкие капельки мас­ла, получаемые с помощью специального пульверизатора, попа­дают через отверстие в верхней пластине в пространство между пластинами. Движение отдельной капельки масла наблюдают в микроскоп. Конденсатор заключен в защитный кожух, поддерживаемый при неизменной температуре, предохраняю­щей капельки от конвекцион­ных токов воздуха.

Капельки масла при рас­пылении заряжаются, и по­этому на каждую действуют две силы: результирующая силы тяжести и выталки­вающей (архимедовой) силы и сила, вызванная электри­ческим полем.

 

ПРОХОЖДЕНИЕ ЭЛЕКТРИЧЕСКОГО ТОКА ЧЕРЕЗ МЕТАЛЛЫ

Электронная проводимостьметаллов. Прохождение тока через металлы (проводники первого рода) не сопровож­дается химическим изменением их. Это обстоятельст­во заставляет предполагать, что атомы металла при про­хождении тока не перемещаются от одного участка провод­ника к другому. Это предположение было подтверждено опытами немецкого физика Карла Виктора Эдуарда Рик­ке (1845 —1915). Рикке составил цепь, в которую входили три тесно прижатых друг к другу торцами цилиндра, из которых два крайних были медные, а средний алюминие­вый. Через эти цилиндры пропускался электрический ток в течение весьма длительного времени (больше года), так что общее количество протекшего электричества достигло огромной величины (свыше 3 000 000 Кл). Производя затем тщательный анализ места соприкосновения меди и алю­миния, Рикке не мог обнаружить следов проникновения одного металла в другой. Таким образом, при прохождении тока через металлы атомы металла не перемещаются вместе с током.

Каким же образом происходит перенос зарядов при про­хождении тока через металл?

Согласно представлениям электронной теории, которыми мы неоднократно пользовались, отрицательные и положи­тельные заряды, входящие в состав каждого атома, сущест­венно отличаются друг от друга. Положительный заряд свя­зан с самим атомом и в обычных условиях неотделим от основной части атома (его ядра). Отрицательные же заря­ды — электроны, обладающие определенным зарядом и мас­сой, почти в 2000 раз меньшей массы самого легкого атома — водорода, сравнительно легко могут быть отделены от атома; атом, потерявший электрон, образует положительно заря­женный ион. В металлах всегда есть значительное число «свободных», отделившихся от атомов электронов, которые блуждают по металлу, переходя от одного иона к другому. Эти электроны под действием электрического поля легко перемещаются по металлу. Ионы же составляют остов ме­талла, образуя его кристаллическую решетку (см. том I).

Одним из наиболее убедительных явлений, обнаружи­вающих различие между положительным и отрицательным электрическими зарядами в металле, является упомянутый в § 9 фотоэлектрический эффект, показывающий, что элект­роны сравнительно легко могут быть вырваны из металла, тогда как положительные заряды крепко связаны с ве­ществом металла. Так как причпрохождении тока атомы, а следовательно, и связанные с ними положительные заряды не перемещаются по проводнику, то переносчиками электри­чества в металле следует считать свободные электроны. Непосредственным подтверждением этих представлений явились важные опыты, выполненные впервые в 1912 г. Л. И. Мандельштамом и Н. Д. Папалекси *), но не опуб­ликованные ими. Четыре года спустя (1916 г.) Р. Ч. Толмен и Т. Д. Стюарт опубликовали результаты своих опытов, оказавшихся аналогичными опытам Мандельштама и Па­палекси.

При постановке этих опытов исходили из следующей мысли. Если в металле есть свободные заряды, обладаю­щие массой, то они должны подчиняться закону инерции (см. том I). Быстро движущийся, например, слева направо проводник представляет собой совокупность движущихся в этом направлении атомов металла, которые увлекают вместе с собой и свободные заряды. Когда такой проводник внезапно останавливается, то останавливаются входящие в его состав атомы; свободные же заряды по инерции должны продолжать движение слева направо, пока различные по­мехи (соударения с остановившимися атомами) не остановят их. Происходящее явление подобно тому, что наблюдается при внезапной остановке трамвая, когда «свободные», не прикрепленные к вагону предметы и люди по инерции не­которое время продолжают двигаться вперед.

Таким образом, краткое время после остановки провод­ника свободные заряды в нем должны двигаться в одну сторону. Но движение зарядов в определенную сторону есть электрический ток. Следовательно, если наши рассуж­дения справедливы, то после внезапной остановки провод­ника надо ожидать появления в нем кратковременного то­ка. Направление этого тока позволит судить о знаке тех зарядов, которые двигались по инерции; если слева направо будут двигаться положительные заряды, то обнаружится ток, направленный слева направо; если же в этом направле­нии будут двигаться отрицательные заряды, то должен наблюдаться ток, имеющий на­правление справа налево. Воз­никающий ток зависит от за­рядов и способности их носи­телей более или менее долго сохранять по инерции свое движение, несмотря на поме­хи, т. е. от их массы. Таким образом, этот опыт не только позволяет проверить предпо­ложение о существовании в металле свободных зарядов, но и определить сами заря­ды, их знак и массу их носи­телей (точнее, отношение за­ряда к массе e/m).

В практическом осуществ­лении опыта оказалось более удобным использовать не по­ступательное, а вращательное движение проводника. Схема такого опыта приведена на рис. 141. На катушке, в которую вделаны две изолиро­ванные друг от друга полуоси 00, укреплена проволочная спираль /. Концы спирали припаяны к обеим половинам оси и при помощи скользящих контактов 2 («щеток») при­соединены к чувствительному гальванометру 3. Катушка приводилась в быстрое вращение и затем внезапно тормози­лась. Опыт действительно обнаружил, что при этом в галь­ванометре возникал электрический ток. Направление этого тока показало, что по инерции движутся отрицатель­ные заряды. Измерив заряд, переносимый этим кратковре­менным током, можно было найти отношение свободного заряда к массе его носителя. Отношение это оказалось равным e/m=l,8∙1011 Кл/кг, что хорошо совпадает со зна­чением такого отношения для электронов, определенным другими способами. Итак, опыты показывают, что в металлах имеются сво­бодные электроны. Эти опыты являются одним из наиболее важных подтверждений электронной теории металлов. Электрический ток в металлах представляет собой упоря­доченное движение свободных электронов (в отличие от их беспорядочного теплового движения, всегда имеющегося в проводнике).

Строение металлов. Как свободные электроны, входя­щие в состав металла, так и его ионы находятся в непре­рывном беспорядочном движении. Энергия это­го движения и представляет собой внутреннюю энергию тела. Движение ионов, образующих кристаллическую решетку, состоит лишь в колебаниях около своих положений рав­новесия. Свободные же электроны могут перемещаться по всему объему металла.

Если внутри металла нет электрического поля, то дви­жение электронов совершенно хаотично; в каждый момент скорости различных электронов различны и имеют всевоз­можные направления (рис. 143, а). Электроны в этом смыс­ле подобны обычному газу, и поэтому их часто называют электронным газом. Такое тепловое движение не вызовет, очевидно, никакого тока, так как вследствие полной хао­тичности в каждом направлении будет двигаться столько же электронов, сколько и в противоположном, и поэтому суммарный заряд, переносимый через любую площадку внутри металла, будет равен нулю.

Дело, однако, изменится, если мы приложим к концам проводника разность потенциалов, т. е. создадим внутри металла электрическое поле. Пусть напряженность поля равна E. Тогда на каждый из электронов действует сила eЕ (е — заряд электрона), направленная вследствие отри­цательности заряда электронов противоположно полю. Благодаря этому электроны получат дополнительные ско­рости, Направленные в одну сторону (рис. 143, б). Теперь уже движение электронов не будет вполне хаотичным: на­ряду с беспорядочным тепловым движением электронный газ будет перемещаться как целое, и поэтому возникнет электрический ток. Выражаясь образно, можно сказать, что ток в металлах представляет собой «электронный ве­тер», вызванный внешним полем. Причина электрического сопротивления. Теперь мы можем понять, почему металлы оказывают сопротивление электрическому току, т. е. почему для поддержания дли­тельного тока нужно все время поддерживать разность потенциалов на концах металлического проводника. Если бы электроны не испытывали никаких помех в своем дви­жении, то, будучи приведены в упорядоченное движение, они двигались бы по инерции, без действия электрического поля, неограниченно долго. Однако в действительности электроны испытывают соударения с ионами. При этом электроны, обладавшие перед соударением некоторой скоростью упорядоченного движения, после соударения будут отскакивать в произвольных, случайных направлениях, и упорядоченное движение электронов (электрический ток) будет превращаться в беспорядочное (тепловое) движение: после устранения электрического поля ток очень ско­ро исчезнет. Для того чтобы получить длительный ток, нужно после каждого соударения вновь и вновь гнать электроны в определенном направлении, а для этого нуж­но, чтобы на электроны все время действовала сила, т. е. чтобы внутри металла было электрическое поле.

Чем большая разность потенциалов поддерживается на концах металлического проводника, тем сильнее внутри него электрическое поле, тем больше ток в проводнике. Расчет, которого мы не приводим, показывает, что раз­ность потенциалов и сила тока должны быть строго про­порциональны друг другу (закон Ома).

Двигаясь под действием электрического поля, электро­ны приобретают некоторую кинетическую энергию. При соударениях эта энергия частично передается ионам ре­шетки, отчего они приходят в более интенсивное тепловое движение. Таким образом, при наличии тока все время про­исходит переход энергии упорядоченного движения элект­ронов (тока) в энергию хаотического движения ионов и электронов, которая представляет собой внутреннюю энер­гию тела; а это значит, что внутренняя энергия металла уве­личивается. Этим объясняется выделение джоулева тепла.

Резюмируя, можно сказать, что причина электрическо­го сопротивления заключается в том, что электроны при своем движении испытывают соударения с ионами металла. Эти соударения производят такой же результат, как и действие некоторой постоянной силы трения, стремящейся тормозить движение электронов.

Различие в проводимости разных металлов обусловлено некоторыми различиями в числе свободных электронов в единице объема металла и в условиях движения элект­ронов, что сводится к различию в средней длине свободно­го пробега, т. е. пути, проходимого в среднем электроном между двумя соударениями с ионами металла. Однако эти различия не очень значительны, вследствие чего проводи­мость одних металлов отличается от проводимости других всего лишь в несколько де­сятков раз; в то же время проводимость даже худших из металлических проводников в сотни тысяч раз больше про­водимости хороших электролитов и в миллиарды раз пре­восходит проводимость полупроводников.

Явление сверхпроводимости означает, что в метал­ле возникли условия, при которых электроны не испытыва­ют сопротивления своему движению. Поэтому для поддер­жания длительного тока в сверхпроводнике не нужно наличия разности потенциалов. Достаточно каким-либо толчком привести электроны в движение, и тогда ток в сверх­проводнике будет существовать и после устранения раз­ности потенциалов.

Работа выхода. Свобод­ные электроны находятся внутри металла в непрерывном тепловом движении. Однако, несмотря на это, они не раз­летаются из металла. Это свидетельствует о том, что есть какие-то силы, препятствующие их вылету, т. е. что на электроны, стремящиеся выйти за поверхность металла, в поверхностном слое действует электрическое поле, направ­ленное от металла наружу (электроны отрицательны). Это значит, что при прохождении электрона через поверхност­ный слой металла силы, действующие на электрон в этом слое, совершают отрицательную работу —А (здесь А>0), а следовательно, между точками внутри металла и снару­жи имеется некоторое напряжение, называемое напряжением выхода.

Из сказанного следует, что для удаления электрона из металла в вакуум нужно совершить против сил, действую­щих в поверхностном слое, положительную работу А, на­зываемую работой выхода. Эта величина зависит от приро­ды металла.

Между работой выхода и потенциалом выхода имеется очевидное соотношение

A = eU,

где e — заряд электрона (точнее, абсолютное значение за­ряда электрона, равное элементарному заряду). Поэтому работу выхода обычно записывают в виде eq>.

Работу еср против сил в поверхностном слое электрон может совершить за счет запаса кинетической энергии. Ес­ли кинетическая энергия меньше работы выхода, он не сможет проникнуть через поверхностный слой и останется внутри металла. Таким образом, условие, при котором электрон может вылететь из металла, имеет вид

Здесь т — масса электрона, vn — нормальная (перпенди­кулярная к поверхности) составляющая его скорости, eU — работа выхода.

При комнатной температуре средняя энергия теплового движения электронов в металле в несколько десятков раз меньше работы выхода; поэтому практически все электроиы удерживаются полем, имеющимся в поверхностном слое, внутри металла.

Работу выхода обычно измеряют не в джоулях, а в электронвольтах (эВ). Один электронеольт есть работа, совершаемая силами поля над зарядом, равным заряду элек­трона (т. е. над элементарным зарядом е), при прохожде­нии им напряжения один вольт:Испускание электронов накаленными телами.Тепло­вое движение электронов в металле имеет беспорядочный характер, так что скорости отдельных электронов могут значительно отличаться друг от друга, подобно тому как это имеет место для молекул газа. Это значит, что внутри металла всегда найдется некоторое число быст­рых электронов, способных прорваться сквозь поверхность. Иными словами, если принятая нами картина строения ме­талла верна, то должно происходить «испарение» электро­нов, подобное испарению жидкостей.

Однако при комнатных температурах условие (89.2) вы­полняется только для ничтожной доли электронов метал­ла, и испарение электронов настолько слабо, что его обна­ружить невозможно. Дело изменится, если нагреть металл до очень высокой температуры (1500—2000 °С). В этом слу­чае тепловые скорости увеличиваются, число вылетающих электронов возрастает, и испарение их можно легко на­блюдать на опыте. Для подобного опыта может служить лампа Л (рис. 144), содержащая, кроме нити накала К (например, вольфрамовой), еще дополнительный электрод Л. Воздух из лампы тщательно выкачан, чтобы не осложнять явления участием ионов воздуха. Лампа соединена с бата­реей £i и гальванометром Г так, что отрицательный полюс батареи соединен с нитью накала.

При холодной нити гальванометр не показывает тока, так как между катодом и анодом нет ни ионов, ни электро­нов, которые могли бы переносить заряды. Если, однако, накалить нить при помощи вспомогательной батареи Б2 и постепенно увеличивать ток накала, то при белом калении нити в цепи появляется ток. Этот ток образуется испаряющимися из нити электронами, которые под действием при­ложенного электрического поля движутся от нити К к электроду А. Число электронов, испускаемых с единицы поверхности раскаленного катода, очень сильно зависит от его температуры и от материала, из которого он сделан (работа выхода). Поэтому наблюдаемый ток очень быстро возрастает с повышением температуры нити.

Если присоединить полюсы батареи Б1 так, чтобы нить оказалась соединенной с положительным полюсом, то тока в цепи не будет, как бы сильно мы ни нагревали нить. Это происходит потому, что электрическое поле теперь стремится двигать электроны от А к К и поэтому возвра­щает испарившиеся электроны обратно в нить накала. Этот опыт доказывает также, что из металлов испаряются толь­ко отрицательные электроны, но не положительные ионы, которые прочно связаны в кристаллической решетке ме­талла. Описанное явление, носящее название термоэлектронной эмиссии, нашло себе разнообразные и важные при­менения.

 



Дата добавления: 2017-05-02; просмотров: 3357;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.