Коммутируемый по меткам тракт LSP
Коммутируемый по меткам тракт – это последовательность MPLS -маршрутизаторов. Набор пакетов, передаваемый по LSP, относится к одному FEC, и каждый маршрутизатор LSR в LSP-туннеле назначает для него свою метку. LSP-туннель создается внутри LSP-тракта. Следует отметить, что зачастую начало и конец туннеля не совпадают с началом и концом LSP-тракта. Как правило, туннель короче. Для каждого туннеля подсчитывается число пропущенных пакетов и байт. Иногда поток данных может быть настолько велик, что для него создается несколько LSP-туннелей между отправителем и получателем. В одном LSP может быть создано несколько LSP-туннелей с различными точками приема и передачи, а в каждом туннеле могут быть созданы LSP-туннели другого уровня. В этом проявляется иерархичность структуры MPLS. Возможны два варианта создания туннелей: по принципу hop-by-hop, который предполагает, что каждый маршрутизатор самостоятельно выбирает дальнейший путь следования пакета, или по принципу явной маршрутизации, в котором маршрутизаторы передают пакет в соответствии с указаниями, полученными от верхнего в данном тракте LSR. Таким образом, в первом случае маршрут следования пакетов определяется случайным образом, а в случае явной маршрутизации он известен заранее. В сети MPLS может существовать набор маршрутизаторов, которые являются входными для конкретного FEC, тогда считается, что для этого FEC существует LSP-туннель с разными точками входа и выхода. Если для некоторых из этих LSP выходным является один и тот же LER, то можно говорить о дереве LSP, корнем которого служит данный выходной маршрутизатор. LSP можно рассматривать как тракт, создаваемый путем сцепления одного и более участков маршрута, который позволяет пересылать пакет, заменяя на каждом узле сети MPLS входящую метку исходящей меткой (так называемый алгоритм перестановки меток). Таким образом, тракт сети MPLS можно рассматривать как туннель, для создания которого в IP-пакет вставляется заголовок – метка, о котором речь шла ранее. LSP устанавливаются либо перед передачей данных (с управлением от программы), либо при обнаружении определенного потока данных (управляемые данными LSP). На сегодняшний день применение туннелирования реализовано во многих технологиях. Образование в виртуальном тракте туннелей, по которым проходят другие виртуальные тракты, основывается на инкапсуляции передаваемых пакетов в пакеты, следующие по этому тракту к данному адресу назначения.
Основные понятия (таблица 4.5)
Таблица 4.5. Основные термины MPLS | |
Понятие | |
FEC – Forwarding Equivalence Class –класс эквивалентности пересылки | Множество пакетов, которые пересылаются одинаково, например, с целью обеспечить заданное QoS |
Label – метка | Короткий идентификатор фиксированной длины, определяющий принадлежность пакета тому или иному FEC |
Label swapping – замена меток | Замена метки принятого узлом сети MPLS пакета новой меткой, связанной с тем же FEC, при пересылке этого пакета к нижестоящему узлу |
LER – MPLS edge router – пограничный узел сети MPLS | Пограничный узел сети MPLS, который соединяет домен MPLS с узлом, находящимся вне этого домена |
Loop detection - выявление закольцованных маршрутов | Метод выявления и устранения закольцованных маршрутов |
Loop prevention – предотвращение образования закольцованных маршрутов | Метод, позволяющий обнаружить, что пакет прошел через узел более одного раза |
LSP – Label Switched Path – коммутируемый по меткам тракт | Приходящий через один или более LSR тракт, по которому следуют пакеты одного и того же FEC |
ER–LSP – explicitly routed LSP – LSP с явно заданным маршрутом | Тракт LSP, который организован способом, отличным от традиционной маршрутизации пакетов IP |
LSR – label switching router – маршрутизатор коммутации по меткам | Маршутизатор, способный пересылать пакеты по технологии MPLS |
MPLS domain – домен MPLS | Совокупность узлов MPLS, между которыми существуют непрерывные LSP |
MPLS egress node – выходной узел сети MPLS | Последний MPLS -узел в LSP, направляющий исходный пакет к адресату, который находится вне MPLS -сети |
MPLS ingress node | Первый MPLS -узел в LSP, принимающий исходный пакет и помещающий в него метку MPLS |
Принцип работы
Более подробно опишем функционирование сети MPLS. Так, любой IP-пакет на входе в сеть MPLS, независимо от того, поступает этот пакет от отправителя или же он пришел из смежной сети, которая может быть MPLS -сетью более высокого уровня, относится к определенному классу эквивалентной пересылки FEC (Forwarding Equivalence Class). Напомним, что анализ заголовка IP-пакета и назначение FEC производится только один раз на входе в сеть (рис. 4.6).
Рис. 4.6. Фрагмент MPLS-сети
Этап 1. Сеть автоматически формирует таблицы маршрутизации. В этом процессе участвуют маршрутизаторы или коммутаторы IP+ATM, установленные в сети сервис-провайдера. При этом применяются внутренние протоколы маршрутизации, такие как OSPF или IS-IS.
Этап 2. Протокол распределения меток (Label Distribution Protocol — LDP) использует отраженную в таблицах топологию маршрутизации для определения значений меток, указывающих на соседние устройства. В результате этой операции формируются маршруты с коммутацией по меткам (Label Switched Paths – LSP).Автоматическое присвоение меток MPLS выгодно отличает эту технологию от технологии частных виртуальных каналов ATM PVC, требующих ручного присвоения VCI/VPI.
Этап 3. Входящий пакет поступает на пограничный Label Switch Router (LSR), который определяет, какие услуги 3-го уровня необходимы этому пакету (например QoS или управление полосой пропускания). На основе учета всех требований маршрутизации и правил высокого уровня (policies), пограничный LSR выбирает и присваивает метку, которая записывается в заголовок пакета, после чего пакет передается дальше.
Этап 4. Устройство LSR, находящееся в опорной сети, считывает метки каждого пакета, заменяет старые метки новыми (новые метки определяются по локальной таблице) и передает пакет дальше. Эта операция повторяется в каждой точке передачи пакета по опорной сети.
Этап 5. На выходе пакет попадает в пограничный LSR, который удаляет метку, считывает заголовок пакета и передает его по месту назначения. В магистральных LSR метка MPLS сравнивается с заранее рассчитанными таблицами коммутации и содержит информацию 3-го уровня. Это позволяет каждому устройству LSR автоматически оказывать каждому пакету необходимые IP-услуги. Таблицы рассчитываются заранее, что снимает необходимость повторной обработки пакетов в каждой точке передачи. Такая схема не только позволяет разделить разные типы трафика (например, отделить неприоритетный трафик от критически важного); она делает решения MPLS хорошо масштабируемыми. Поскольку для присвоения меток технология MPLS использует разные наборы правил (policy mechanisms), она отделяет передачу пакетов от содержания заголовков IP. Метки имеют только локальное значение и многократно переиспользуются в крупных сетях, поэтому исчерпать запас меток практически невозможно. В рамках предоставления корпоративных IP-услуг самое главное преимущество MPLS заключается в способности присваивать метки, имеющие специальное значение. Наборы меток определяют не только место назначения, но и тип приложения и класс обслуживания.
Дата добавления: 2021-07-22; просмотров: 384;