Доказательство формулы.


Вспомним, что по правилу дифференцирования произведения, которое мы доказывали в прошлом семестре: = . Тогда = .

Тогда и неопределённые интегралы от этих двух функций совпадают:

= .

Но первообразная от производной, это сама функция и есть, т.е.

.

Поэтому = .

Пример. Вычислить .

Решение. Если обозначить , , то при переходе к степенной понизится степень, в данном случае она вообще перейдёт в 1. А вот для второго множителя переходим к первообразной, но там не усложняется, остаётся точно так же как и было, . Поэтому на следующем шаге интеграл содержит вообще не два множителя, а один!

Составим таблицу:

= , тогда получаем ответ: .

 

Пример.Вычислить интеграл: Составим таблицу:

После применения формулы, останется интеграл, в котором всего лишь один множитель, а не два, потому что переходит в 1, и один из множителей исчезает.

= = .

 

А есть такие случаи, когда функция состоит не из 2 множителей, а всего из одного, но мы ведь всё равно можем считать, что второй множитель есть, только он равен 1.

Пример. .

Здесь производная от подынтегральной функции устроена лучше и проще, чем сама функция, но правда, пришлось допустить некоторое незначительное усложнение типа функции при переходе от к .

= = = .

 




Дата добавления: 2017-04-05; просмотров: 1220;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.