Абсолютная температура


Понятие о термодинамическом процессе

Рабочее тело и параметры его состояния

Всякая тепловая машина приводится в действие вследствие происходящего в ней изменения состояния вещества, называемого рабочим телом или рабочим агентом.

Совокупность тел, находящихся в тепловом и механическом взаимодействии друг с другом и окружающей средой, называется термодинамической системой.

Рабочее тело определяет тип и назначение тепловой машины. Так у паровой машины рабочим телом является водяной пар, у поршневых двигателей внутреннего сгорания и газотурбинных двигателей — продукты сгорания топлива, у компрессоров холодильных машин рабочим агентом является пар аммиака, фреона и т. д. Для расчета термодинамического анализа работы тепловой машины необходимо знать термодинамические свойства рабочего тела.

Наиболее эффективными рабочими телами для тепловых машин являются газы и пары, обладающие наибольшим коэффициентом объемного расширения.

В технической термодинамике в качестве рабочего тела принимается идеальный газ — условное газообразное вещество, силами взаимодействия, между молекулами которого пренебрегают.

В реальных же газах учитываются силы притяжения между молекулами, а молекулы имеют объем. Если реальные газы сильно разряжены, их свойства близки к свойствам идеального газа.

В качестве идеальных газов могут рассматривать такие газы, как азот, гелий, водород.

В общем случае для теплотехнических расчетов вполне допустимо распространение свойств идеального газа на все рассматриваемые газы. Это позволяет упростить математические выражения законов термодинамики.

Очевидно, что одно и то же вещество при различных условиях может находиться в различных состояниях.

Для того чтобы определить конкретные физические условия, при которых рассматривается данное вещество и тем самым однозначно определить его состояние, вводятся параметры состояния вещества.

Параметрами состояния газа называются величины, характеризующие данное состояние газа.

К параметрам состояния газа относятся абсолютная температура, абсолютное давление, удельный объем, внутренняя энергия, энтропия, энтальпия и др. Абсолютная температура, абсолютное давление и удельный объем являются основными параметрами газообразного вещества.

Абсолютная температура

Температура газа служит мерой кинетической энергии поступательного движения молекул газа и характеризует степень его нагрева. Температуру газа измеряют приборами, основанными на тех или иных свойствах вещества, меняющихся с изменением температуры. Эти приборы имеют градуировку, т. е. температурную шкалу.

Создателем первого такого прибора — термометра был немецкий ученый Фаренгейт, который за начало шкалы принял уровень, соответствующий температуре таяния смеси, состоящей из равных мacc нашатыря и тающего льда. Верхней точкой был уровень, соответствующий температуре кипения воды при нормальном атмосферном давлении. Расстояние между этими двумя уровнями он разделил на 180 частей и, таким образом, получил один градус.

В 1723 г. французский физик Реомюр предложил шкалу, основанную на двух опорных точках, соответствующих температурам таяния льда и кипения воды при нормальном атмосферном давлении. Расстояние между двумя точками он разделил на 80 равных частей.

В 1742 г. шведский астроном Цельсий предложил температурную шкалу с теми же опорными точками, на которых построена шкала Реомюра, но расстояние между ними он разделил на 100 частей. Обозначается градус Цельсия — °С.

В настоящее время в термодинамике в качестве основной принята термодинамическая температурная шкала, где нижней границей шкалы является температура абсолютного нуля (практически недостижимая), когда прекращается тепловое движение молекул.

Единица температуры по термодинамической температурной шкале получила название Кельвин по имени ученого У. Томпсона, лорда Кельвина, предложившего начало отсчета вести от абсолютного нуля.

Тройной точке воды, т. е. когда в равновесии находятся три фазы воды: лед, жидкость и пар, присвоена температура 273,15 К. Она находится на 0,01 °С выше точки плавления льда.

На рис. 1 показано соотношение между шкалой Цельсия и шкалой Кельвина, т. е.

где Т — температура по термодинамической шкале, К;

t — температура по шкале Цельсия, °С.

Рис. 1. Сопоставление шкалы Цельсия и термодинамической шкалы

 

К преимуществам термодинамической температурной шкалы можно отнести следующее:

· во-первых, значения температур по этой шкале не зависят от физических свойств термометрических тел;

· во-вторых, температура по этой шкале может быть воспроизведена с большой точностью, так как она строится по одной опорной точке;

· в-третьих, все температуры — величины положительные, что упрощает расчеты.



Дата добавления: 2017-02-13; просмотров: 2218;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.