Линейчатые поверхности
Линейчатой поверхностью называется поверхность, которая может быть образована движением прямой линии в пространстве. В зависимости от характера движения образующей получаются различные типы линейчатых поверхностей.
![]() |
Если прямолинейная образующая при своём движении перемещается по ломаной направляющей, то такая поверхность является гранной. При этом, если прямолинейная образующая во всех положениях проходит через неподвижную точку S (вершину), то полученная поверхность является пирамидальной в соответствии с рисунком 1.3.37, а. Определитель этой поверхности Q(l,m,S). Если прямолинейная образующая при своём перемещении имеет постоянное направление, то такая поверхность называется призматической в соответствии с рисунком 1.3.37, б. Определитель данной поверхности S(l,m,s).
Рисунок 1.3.37 – Линейчатые гранные поверхности
Многогранники (пирамиды, призмы) – это замкнутые поверхности, образованные некоторым количеством граней. В данном случае и поверхность, и тело, ограниченное этой поверхностью, носят одно название. Элементами многогранника являются вершины, рёбра и грани; совокупность всех рёбер многогранника называют его сеткой. Построение проекций многогранника сводится к построению проекций его сетки.
Среди множества многогранников выделяют правильныемногогранники. У таких многогранников все рёбра, грани и углы равны между собой. На рисунке 1.3.38, например, показан правильный многогранник, называемый октаэдром.
![]() |
Среди криволинейных линейчатых поверхностей наибольшее распространение получили следующие типы поверхностей: конические, цилиндрические, с ребром возврата (торсы), с плоскостью параллелизма (поверхности Каталана), винтовые поверхности.
Рисунок 1.3.38 – Правильный многогранник
![]() |
1.3.4.2 Коническая и цилиндрическая поверхности
Рисунок 1.3.39 – Коническая и цилиндрическая поверхности
Коническая поверхность образуется прямой линией l (образующей), перемещающейся вдоль кривой линии m (направляющей) и имеющей неподвижную точку S (вершину) в соответствии с рисунком 1.3.39, а. Определитель поверхности Q(l,m,S).
Цилиндрическая поверхность образуется прямой линией l (образующей), перемещающейся вдоль кривой линии m (направляющей) и имеющей постоянное направление s в соответствии с рисунком 1.3.39, б. Определитель поверхности S(l,m,s).
Поскольку все прямые, имеющие одно и то же направление, т.е. параллельные между собой, пересекаются в бесконечно удалённой (несобственной) точке, то цилиндрическую поверхность можно рассматривать как частный случай конической поверхности.
При задании конической и цилиндрической поверхностей на комплексном чертеже в качестве направляющей часто выбирают линию m пересечения поверхности с одной из плоскостей проекций.
Точки на поверхности (например, точку А на рисунке 1.3.39) строят при помощи проходящих через них образующих.
Дата добавления: 2017-02-13; просмотров: 1678;