Части зданий - конструкции и материалы

 

Фундаментом называется подземная часть здания или сооружения, воспринимающая все нагрузки, как постоянные, так и временные, возникающие в надземных частях, и передающая давление от этих нагрузок на основание (рис.1).

Верхняя плоскость фундамента, на которой располагаются надземные части здания или сооружения, называется поверхностью фундамента или обрезом, а нижняя его плоскость, непосредственно соприкасающаяся с основанием, - подошвой фундамента.

Глубина заложения фундаментов, или расстояние от планировочной отметки земли до подошвы фундамента, для зданий без подвала определяется в зависимости от назначения зданий и их конструктивных особенностей, наличия подземных коммуникаций, величины и характера нагрузок, глубины заложения фундаментов примыкающих зданий, геологических и гидрологических условий строительной площадки (виды грунтов, несущая способность и пучинистость, уровень грунтовых вод и возможные колебания его в период строительства и эксплуатации зданий и т.д.) и от климатических условий района.

В случаях, когда основание фундамента состоит из пучинистых или склонных к пучению грунтов (крупнообломочных с глиняным заполнением, пылеватых и мелкозернистых песков, супесей, суглинков и глин), глубину заложения фундаментов наружных стен и колонн назначают в зависимости от нормативной глубины сезонного промерзания грунтов.
При определении расчётной глубины промерзания грунтов под зданием учитывают влияние режима его эксплуатации и конструктивное решение полов первого этажа. В отапливаемых помещениях грунт под полом прогревается по-разному в зависимости от конструкции пола, поэтому нормативная глубина промерзания снижается за счёт теплового режима здания.
Фундаменты под внутренние несущие конструкции отапливаемых зданий заглубляются без учёта глубины промерзания, так как под ними грунт практически не промерзает, и она может быть принята минимальной - 0,5 м от уровня проектной отметки поверхности земли.

В зависимости от типа конструкции различают ленточные, столбчатые, сплошные (плитные) и свайные фундаменты (рис.2), в зависимости от технологии возведения - сборные и монолитные, мелкого заложения (до 5 м от поверхности земли) и глубокого (более 5 м).
В зависимости от работы фундаментов под нагрузкой различают фундаменты жесткие и гибкие. Жесткие работают преимущественно на сжатие (например бетонные), гибкие - на растягивающие и скалывающие усилия (к ним относятся фундаменты с железобетонным подушками).
Бетон и железобетон являются основными материалами для возведения фундаментов. В массовом жилищном строительстве в основном применяются сборные железобетонные элементы. В малоэтажном строительстве возможно использование бута, бутобетона и хорошо обожженного кирпича.

Ленточные фундаменты представляют собой непрерывную стенку, равномерно загруженную вышележащими несущими или самонесущими стенами или же колоннами каркаса. Равномерная передача ленточными фундаментами нагрузки на основание очень важна, когда на строительной площадке имеются неоднородные по сжимаемости грунты, а также просадочные или слабые грунты с прослойками. Ленточные фундаменты бывают монолитными и сборными.
Сборные фундаменты в зависимости от строительной системы здания монтируют из различных конструктивных элементов. В панельных зданиях сборные ленточные фундаменты устраивают из железобетонных плит - подушек и бетонных цокольных (наружных и внутренних) панелей.
В зависимости от проектируемого температурного режима подвала (подполья) наружные цокольные панели могут быть утеплёнными (одно- или трёхслойными) или неутеплёнными. В цокольных панелях под внутренние стены предусматриваются проёмы для сквозного прохода по подполью (подвалу) и пропуску инженерных коммуникаций.
В кирпичных и крупноблочных зданиях сборные ленточные фундаменты выполняют из железобетонных плит - подушек и бетонных стеновых блоков.
В малоэтажном строительстве на прочных сухих грунтах устраивают прерывистые ленточные фундаменты, в которых плиты-подушки укладывают с разрывами с последующей засыпкой сухим песком.
Для малоэтажных зданий и в случае отсутствия индустриальной базы применяются монолитные ленточные конструкции фундаментов, выполняемые из бетона, бутобетона или бутовой кладки (если бут является местным материалом).

Столбчатые фундаменты устраивают в тех случаях, когда нагрузки на основание настолько малы, что давление на грунт от фундамента здания меньше нормативного давления на грунт (например, при малоэтажных зданиях) или когда слой грунта, служащий основанием, залегает на значительной глубине (3-5 м) и применение ленточных фундаментов экономически нецелесообразно.
Фундаменты данного типа применяют в каркасных зданиях различной этажности либо в малоэтажных зданиях (каркасных и бескаркасных).
Столбчатые фундаменты, устраиваемые под малоэтажными зданием с несущими стенами, располагают под углами стен, на пересечениях наружных и внутренних стен и под простенками. На них под стены укладывают перемычки или фундаментные балки.
Столбчатые фундаменты под колонны каркасных, а также крупнопанельных зданий выполняют сборными из железобетонных элементов, состоящих из подушки и фундаментного столба или из блока стаканного типа, образующих башмак.

Сплошные (плитные) фундаменты применяются в следующих случаях:

  • при слабых грунтах на строительной площадке или при значительных нагрузках от здания;
  • при разрушенных, размытых или насыпных грунтах основания;
  • при неравномерной сжимаемости грунтов;
  • при необходимости защиты от высокого уровня грунтовых вод.

Плитные фундаменты конструируют в виде плоских и ребристых плит или в виде перекрёстных лент. Для зданий с большими нагрузками, а также в случае использования подземного пространства применяются коробчатые фундаменты.
Плитные фундаменты проектируют под здания в основном с каркасной конструктивной системой. Для повышения жёсткости плиты устраивают рёбра в перекрёстных направлениях, которые могут выполняться как рёбрами вверх, так и вниз по отношению к плите.
На пересечениях ребер фундаментной плиты устанавливаются колонны при каркасной конструктивной системе, а при стеновой рёбра используются как стены цокольной части здания, на которые устанавливают несущие конструкции его наземной части.
Фундаменты в виде коробчатого сечения применяются при возведении высотных зданий с большими нагрузками. Ребра такой плиты выполняются на полную высоту подземной части здания и жёстко соединяются с перекрытиями, образуя, таким образом замкнутые различной конфигурации сечения.

Свайные фундаменты устраивают при строительстве зданий на слабых сильносжимаемых водонасыщенных грунтах, а также при передаче на основание больших нагрузок от колонн и стен многоэтажных зданий.
По способу передачи вертикальной нагрузки от здания или сооружения на грунт различают два вида свайных фундаментов: сваи-стойки, которые проходят через слабые грунты и опираются на толщу прочного грунта, и висячие сваи (или сваи трения), которые плотного грунта не достигают, удерживаются в слабом грунте за счет его уплотнения и передают нагрузку на грунт трением, возникающим между боковой поверхностью свай и грунтом (рис.3).
В зависимости от несущей способности и конструктивной схемы здания сваи размещают в один или несколько рядов или кустами. Сваи располагают обязательно подо всеми углами здания и в точках пересечения осей стен. Глубину забивки свай назначают, исходя из несущей способности сваи и грунта основания.
Для обеспечения равномерной передачи нагрузок от стен на сваи по верхним концам последних укладывают монолитные или сборные железобетонные ростверки, а на кусты свай - оголовки. При сборных ростверках оголовки устанавливают и на одиночные сваи. В зданиях без подвалов и технических подполий подошва ростверка должна находиться на 0,1-0,15 м ниже планировочных отметок поверхности земли у здания. При наличии подвала или технического подполья подо всем зданием отметки пола подвала совмещают с верхом ростверка под наружные и внутренние стены.
Прочность соединения конструкции ростверка со сваей обеспечивают заделкой торца сваи в бетон ростверка. Если ростверк устраивают из сборного железобетона и соединяют со сваей через оголовок, то оголовок устанавливают на сваю, закладные детали ростверка и оголовка сваривают стальными накладками, затем зазоры замоноличивают бетоном.

Долгая и беспроблемная служба подземных частей здания зависит в первую очередь от грамотно выполненной гидроизоляции. В последнее время все более актуальной становится также проблема защиты зданий от вибраций.

Рис. 1
Внешние воздействия на фундамент.
1 - нагрузка от вышележащих элементов здания;
2 - температура грунта;
3 - боковое давление грунта;
4 - грунтовая влага;
5 - агрессивные химические вещества;
6 - силы пучения грунта;
7 - вибрации;
8 и 9 - температура и влажность воздуха помещения подвала; 10 -упругий отпор грунта.


A Б


В Г

Рис. 2
Типы фундаментов:
А - столбчатый; Б -ленточный;
В - сплошной; Г - свайный.

 

Гидроизоляция

 

Проникающая в строительные конструкции влага является серьезной причиной их разрушения. Защита от проникновения воды (гидроизоляция) является важным фактором сохранности и долговечности зданий.

При высоком уровне стояния грунтовых вод возникает опасность проникновения их в подвальные помещения, образования течи и пятен сырости на стенах. Капиллярная влага, поднимающаяся по порам в массиве фундамента и цоколя от влажного грунта, может распространиться и в кладку стен нижних этажей. В случае агрессивности грунтовых вод материалы фундамента и подземных частейздания могут разрушаться. Для защиты здания от грунтовых вод предусматривают меры борьбы с движением грунтовых вод и проникновением атмосферных осадков в грунт основания и устраивают защитную гидроизоляцию от проникновения грунтовой влаги в конструкции здания.

Чтобы предупредить проникновение дождевых и талых вод в подземные части здания, осуществляют планировку поверхности участка под застройку, создавая необходимый уклон для отвода поверхностных вод от здания. Вокруг здания вдоль наружных стен устраивают отмостку из плотных водонепроницаемых материалов (асфальт, асфальтобетон и др.).

Для защиты от проникновения грунтовой влаги в конструкции здания при новом строительстве обычно выполняется наружная изоляция конструкций со стороны воздействия воды, а для старой застройки применяют внутреннюю гидроизоляцию в подвальных помещениях.

Выделяют три типа гидроизоляции, соответствующие видам воздействия воды, - безнапорная, противонапорная и противокапиллярная.

Безнапорная гидроизоляция выполняется для защиты от временного воздействия влаги атмосферных осадков, сезонной верховодки, а также в дренируемых полах и перекрытиях.

Противонапорная гидроизоляция - для защиты ограждающих конструкций (полы, стены, фундаменты) от гидростатического подпора грунтовых вод.

Противокапиллярная - для изоляции стен зданий в зоне капиллярного подъема грунтовой влаги.

Устройство гидроизоляции подвалов определяется характером воздействия воды, особенностью дренируемых конструкций и материалов, а также функциональными требованиями к помещениям по эксплуатации, назначению и допустимой влажности. Это влияет на выбор типа и материала изоляции, определяемый необходимыми показателями по водопроницаемости, водостойкости, паропроницаемости и долговечности. Возможности подрядных организаций, сезон и темпы работ также следует учитывать при отборе гидроизоляционных материалов.

Существуют различные методы устройства гидроизоляции: основные - оклеечные, окрасочные, обмазочные, штукатурные, листовые (кессонные) и глиняные, а также специальные - инъекционные, проникающие (пенетрационные), геомембранные пропиточные, шовные, подводные, ликвидации активных течей и др.


Рис. 3
Свайные фундаменты:
А - со стоечными сваями;

Рис. 3
Свайные фундаменты:
Б - с висячими сваями.

 

 

Защита фундаментов и подземных коммуникаций
от деформаций морозного пучения.






Дата добавления: 2017-01-16; просмотров: 1569; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2022 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.018 сек.