Активное сопротивление, индуктивность и емкость в цепи переменного тока.
Изменения силы тока, напряжения и э. д. с. в цепи переменного тока происходят с одинаковой частотой, но фазы этих изменений, вообще говоря, различны. Поэтому если начальную фазу силы тока условно принять за нуль, то начальная фаза напряжения будет иметь некоторое значение φ. При таком условии мгновенные значения силы тока и напряжения и будут выражаться следующими формулами:
i = Imsinωt
u = Umsin(ωt + φ)
a) Активное сопротивление в цепи переменного тока. Сопротивление цепи, которое обусловливает безвозвратные потери электрической энергии на тепловое действие тока, называют активным. Это сопротивление для тока низкой частоты можно считать равным сопротивлению R этого же проводника постоянному току.
В цепи переменного тока, имеющей только активное сопротивление, например, в лампах накаливания, нагревательных приборах и т. п., сдвиг фаз между напряжением и током равен нулю, т. е. φ = 0. Это означает, что ток и напряжение в такой цепи изменяются в одинаковых фазах, а электрическая энергия полностью расходуется на тепловое действие тока.
Будем считать, что напряжение на зажимах цепи меняется по гармоническому закону: и = Uт cos ωt.
Как и в случае постоянного тока, мгновенное значение силы тока прямо пропорционально мгновенному значению напряжения. Поэтому для нахождения мгновенного значения силы тока можно применить закон Ома:
В проводнике с активным сопротивлением колебания силы тока совпадают |
по фазе с колебаниями напряжения.
b) Катушка индуктивности в цепи переменного тока. Включение в цепь переменного тока катушки с индуктивностью L проявляется как увеличение сопротивления цепи. Объясняется это тем, что при переменном токе в катушке все время действует э. д. с. самоиндукции, ослабляющая ток. Сопротивление XL, которое обусловливается явлением самоиндукции, называют индуктивным сопротивлением. Так как э. д. с. самоиндукции тем больше, чем больше индуктивность цепи и чем быстрее изменяется ток, то индуктивное сопротивление прямо пропорционально индуктивности цепи L и круговой частоте переменного тока ω: XL = ωL.
Определим силу тока в цепи, содержащей катушку, активным сопротивлением которой можно пренебречь. Для этого предварительно найдем связь между напряжением на катушке и ЭДС самоиндукции в ней. Если сопротивление катушки равно нулю, то и напряженность электрического поля внутри проводника в любой момент времени должна быть равна нулю. Иначе сила тока, согласно закону Ома, была бы бесконечно большой.
Равенство нулю напряженности поля оказывается возможным потому, что напряженность вихревого электрического поля Ei, порождаемого переменным магнитным полем, в каждой точке равна по модулю и противоположна по направлению напряженности кулоновского поля Ек, создаваемого в проводнике зарядами, расположенными на зажимах источника и в проводах цепи.
Из равенства Ei = -Ек следует, что удельная работа вихревого поля (т. е. ЭДС самоиндукции ei) равна по модулю и противоположна по знаку удельной работе кулоновского поля. Учитывая, что удельная работа кулоновского поля равна напряжению на концах катушки, можно записать: ei = -и.
При изменении силы тока по гармоническому закону i = Im sin соsωt, ЭДС самоиндукции равна: еi = -Li' = -LωIm cos ωt. Так как ei = -и, то напряжение на концах катушки оказывается равным
и = LωIm cos ωt = LωIm sin (ωt + π/2) = Um sin (ωt + π/2)
гдеUm = LωIm — амплитуда напряжения.
Следовательно, колебания напряжения на катушке опережают по фазе колебания силы тока на π/2, или, что то же самое, колебания силы тока отстают по фазе от колебаний напряжения на π/2.
Амплитуда силы тока в катушке равна: |
Если ввести обозначение XL = ωL,то получим . Величину XL, равную произведению циклической частоты на индуктивность, называют индуктивным сопротивлением. Согласно формуле , значение силы тока связано с значением напряжения и индуктивным сопротивлением соотношением, подобным закону Ома для цепи постоянного тока.
Индуктивное сопротивление зависит от частоты ω. Постоянный ток вообще «не замечает» индуктивности катушки. При ω = 0 индуктивное сопротивление равно нулю. Чем быстрее меняется напряжение, тем больше ЭДС самоиндукции и тем меньше амплитуда силы тока. Следует отметить, что напряжение на индуктивном сопротивлении опережает по фазе ток.
c) Конденсатор в цепи переменного тока. Постоянный ток не проходит через конденсатор, так как между его обкладками находится диэлектрик. Если конденсатор включить в цепь постоянного тока, то после зарядки конденсатора ток в цепи прекратится.
Пусть конденсатор включен в цепь переменного тока. Заряд конденсатора (q=CU) вследствие изменения напряжения непрерывно изменяется, поэтому в цепи течет переменный ток. Сила тока будет тем больше, чем больше емкость конденсатора и чем чаще происходит его перезарядка, т. е. чем больше частота переменного тока.
Сопротивление, обусловленное наличием электроемкости в цепи переменного тока, называют емкостным сопротивлением Хс. Оно обратно пропорционально емкости С и круговой частоте ω: Хс=1/ωС.
Установим, как меняется со временем сила тока в цепи, содержащей только конденсатор, если сопротивлением проводов и обкладок конденсатора можно пренебречь.
Напряжение на конденсаторе u = q/C равно напряжению на концах цепи u = Um cosωt.
Следовательно, q/C = Um cosωt. Заряд конденсатора меняется по гармоническому закону:
q = CUm cosωt.
Сила тока, представляющая собой производную заряда по времени, равна:
i = q' = -UmCω sin ωt =UmωC cos(ωt + π/2).
Следовательно, колебания силы тока опережают по фазе колебания напряжения на конденсаторе на π/2.
Амплитуда силы тока равна: Im = Um ωC. Если ввести обозначение Хс=1/ωС, то получим |
Величину Хс, обратную произведению ωС циклической частоты на электрическую емкость конденсатора, называют емкостным сопротивлением. Роль этой величины аналогична роли активного сопротивления R в законе Ома. Значение силы тока связано с значением напряжения на конденсаторе точно так же, как связаны согласно закону Ома сила тока и напряжение для участка цепи постоянного тока. Это и позволяет рассматривать величину Хс как сопротивление конденсатора переменному току (емкостное сопротивление).
Чем больше емкость конденсатора, тем больше ток перезарядки. Это легко обнаружить по увеличению накала лампы при увеличении емкости конденсатора. В то время как сопротивление конденсатора постоянному току бесконечно велико, его сопротивление переменному току имеет конечное значение Хс. С увеличением емкости оно уменьшается. Уменьшается оно и с увеличением частоты ω.
В заключение отметим, что на протяжении четверти периода, когда конденсатор заряжается до максимального напряжения, энергия поступает в цепь и запасается в конденсаторе в форме энергии электрического поля. В следующую четверть периода, при разрядке конденсатора, эта энергия возвращается в сеть.
Из сравнения формул XL = ωL и Хс=1/ωС видно, что катушки индуктивности. представляют собой очень большое сопротивление для тока высокой частоты и небольшое для тока низкой частоты, а конденсаторы — наоборот. Индуктивное ХL и емкостное ХC сопротивления называют реактивными.
d) Закон ома для электрической цепи переменного тока.
Рассмотрим теперь более общий случай электрической цепи, в которой последовательно соединены проводник с активным сопротивлением R и малой индуктивностью, катушка с большой индуктивностью L и малым активным сопротивлением и конденсатор емкостью С
Чему равна амплитуда тока в такой цепи (колебательном контуре), если на ее концах поддерживается напряжение u(t) = Umcos ωt? |
Мы видели, что при включении по отдельности в цепь активного сопротивления R, конденсатора емкостью С или катушки с индуктивностью L амплитуда силы тока определяется соответственно формулами:
; ; Im = Um ωC.
Амплитуды же напряжений на активном сопротивлении, катушке индуктивности и конденсаторе связаны с амплитудой силы тока так: Um = ImR; Um = ImωL;
В цепях постоянного тока напряжение на концах цепи равно сумме напряжений на отдельных последовательно соединенных участках цепи. Однако, если измерить результирующее напряжение на контуре и напряжения на отдельных элементах цепи, окажется, что напряжение на контуре (действующее значение) не равно сумме напряжений на отдельных элементах. Почему это так? Дело в том, что гармонические колебания напряжения на различных участках цепи сдвинуты по фазе друг относительно друга.
Действительно, ток в любой момент времени одинаков во всех участках цепи. Это значит, что одинаковы амплитуды и фазы токов, протекающих по участкам с емкостным, индуктивным и активным сопротивлениями. Однако только на активном сопротивлении колебания напряжения и тока совпадают по фазе. На конденсаторе колебания напряжения отстают по фазе от колебаний тока на π/2, а на катушке индуктивности колебания напряжения опережают колебания тока на π/2. Если учесть сдвиг фаз между складываемыми напряжениями, то окажется, что
Для получения этого равенства нужно уметь складывать колебания напряжений, сдвинутые по фазе друг относительно друга. Проще всего выполнить сложение нескольких гармонических колебаний с помощью векторных диаграмм. Идея метода основана на двух довольно простых положениях.
Во-первых, проекция вектора с модулем хm вращающегося с постоянной угловой скоростью совершает гармонические колебания: х = хm cosωt
Во-вторых, при сложении двух векторов проекция суммарного вектора равна сумме проекций складываемых векторов.
Векторная диаграмма электрических колебаний в цепи, изображенной на рисунке, позволит нам получить соотношение между амплитудой силы тока в этой цепи и амплитудой напряжения. Так как сила тока одинакова во всех участках цепи, то построение векторной диаграммы удобно начать с вектора силы тока Im. Этот вектор изобразим в виде горизонтальной стрелки. Напряжение на активном сопротивлении совпадает по фазе с силой тока. Поэтому вектор UmR, должен совпадать по направлению с вектором Im. Его модуль равен UmR = ImR
Колебания напряжения на индуктивном сопротивлении опережают колебания силы тока на π/2, и соответствующий вектор UmL должен быть повернут относительно вектора Im на π/2. Его модуль равен UmL = Im ωL. Если считать, что положительному сдвигу фаз соответствует поворот вектора против часовой стрелки, то вектор UmL следует повернуть налево. (Можно было бы, конечно, поступить и наоборот.)
Вектор напряжения на конденсаторе UmC отстает по фазе от вектора Im на π/2 и поэтому повернут на этот угол относительно вектора Im направо. |
Его модуль равен UmC =Im/ωC. Для нахождения вектора суммарного напряжения Um нужно сложить три вектора: 1) UmR 2) UmL 3) UmC
Вначале удобнее сложить два вектора: UmL и UmC
Модуль этой суммы равен , если ωL > 1/ωС. Именно такой случай изображен на рисунке. После этого, сложив вектор (UmL + UmC)с вектором UmR получим вектор Um, изображающий колебания напряжения в сети. По теореме Пифагора:
Из последнего равенства можно легко найти амплитуду силы тока в цепи:
Таким образом, благодаря сдвигу фаз между напряжениями на различных участках цепи полное сопротивление Z цепи, изображенной на рисунке, выражается так:
От амплитуд силы тока и напряжения можно перейти к действующим значениям этих величин:
Это и есть закон Ома для переменного тока в цепи, изображенной на рисунке 43. Мгновенное значение силы тока меняется со временем гармонически:
i = Im cos (ωt+ φ), где φ — разность фаз между силой тока и напряжением в сети. Она зависит от частоты ω и параметров цепи R, L, С.
e) Резонанс в электрической цепи.При изучении вынужденных механических колебаний мы познакомились с важным явлением — резонансом. Резонанс наблюдается в том случае, когда собственная частота колебаний системы совпадает с частотой внешней силы. При малом трении происходит резкое увеличение амплитуды установившихся вынужденных колебаний. Совпадение законов механических и электромагнитных колебаний сразу же позволяет сделать заключение о возможности резонанса в электрической цепи, если эта цепь представляет, собой колебательный контур, обладающий определенной собственной частотой колебаний.
Амплитуда тока при вынужденных колебаниях в контуре, совершающихся под действием внешнего гармонически изменяющегося напряжения, определяется формулой:
При фиксированном напряжении и заданных значениях R, L и С, сила тока достигает максимума при частоте ω, удовлетворяющей соотношению
Эта амплитуда особенно велика при малом R. Из этого уравнения можно определить значение циклической частоты переменного тока, при которой сила тока максимальна:
Эта частота совпадает с частотой свободных колебаний в контуре с малым активным сопротивлением.
Резкое возрастание амплитуды вынужденных колебаний тока в колебательном контуре с малым активным сопротивлением происходит при совпадении частоты внешнего переменного напряжения с собственной частотой колебательного контура. В этом состоит явление резонанса в электрическом колебательном контуре.
Резонанс выражен тем отчетливее, чем меньше энергетические потери в цепи, т. е. чем меньше сопротивление R. При R = 0 резонансное значение тока неограниченно возрастает. Наоборот, с увеличением R максимальное значение тока уменьшается и при больших R говорить о резонансе уже не имеет смысла. Зависимость амплитуды силы тока от частоты при различных сопротивлениях показана на рисунке. |
Одновременно с ростом силы тока при резонансе резко возрастают напряжения на конденсаторе и катушке индуктивности. Эти напряжения становятся одинаковыми и во много раз превосходят внешнее напряжение.
Действительно,
Uм, С,рез = Uм, L,рез =
Внешнее напряжение связано с резонансным током так:
Uм = .Если тоUm,C,рез = Um,L,рез >> Um
При резонансе сдвиг фаз между током и напряжением становится равным нулю.
Действительно, колебания напряжения на катушке индуктивности и конденсаторе всегда происходят в противофазе. Резонансные амплитуды этих напряжений одинаковы. В результате напряжения на катушке и конденсаторе полностью компенсируют друг друга, и падение напряжения происходит только на активном сопротивлении.
Равенство нулю сдвига фаз между напряжением и током при резонансе обеспечивает оптимальные условия для поступления энергии от источника переменного напряжения в цепь. Здесь полная аналогия с механическими колебаниями: при резонансе внешняя сила (аналог напряжения в цепи) совпадает по фазе со скоростью (аналог силы тока).
Дата добавления: 2016-12-27; просмотров: 24069;