Периодические несинусоидальные ЭДС, токи и напряжения в электрических цепях.
4.1. Причины возникновения периодических несинусоидальных ЭДС, токов и напряжений.
При генерировании, трансформации, распределении и потреблении электроэнергии возникают искажения формы синусоидальных ЭДС, напряжений и токов.
Несинусоидальные токи в цепях возникают при синусоидальных ЭДС и напряжениях источников электрической энергии, если цепи содержат нелинейные элементы. Так, в катушке с ферромагнитным магнитопроводом, которая является нелинейным элементом, при синусоидальном напряжении сети ток несинусоидальный. Подобное явление наблюдается в промышленных городских сетях, когда в качестве осветительных приборов используются люминесцентные лампы, имеющие нелинейные вольт- амперные характеристики.
Нелинейные элементы широко используются в электрических цепях автоматики, управления, релейной защиты и т. д. Эти нелинейные элементы (стабилизаторы напряжения, умножители и делители частоты, магнитные усилители и т. п.) приводят к искажению формы кривых напряжения или тока.
Известно, что постоянный ток в энергетической электронике получают преобразованием переменного синусоидального тока с помощью выпрямителей, в которых используются нелинейные элементы — диоды. Естественно, что в таких электрических цепях возникают как несинусоидальные токи, так и несинусоидальные напряжения. На рис. 4.1.а-б приведены временные диаграммы напряжений и токов однополупериодного и двухполупериодного выпрямителей, работающих на резистивную нагрузку. В настоящее время широкое распространение получила импульсная техника, т. е. отрасль радиоэлектроники, в которой для решения определенных задач используют импульсные устройства. Формы импульсов напряжений в импульсной технике весьма разнообразны.
Основное распространение получили импульсы треугольной, прямоугольной, трапецеидальной формы и др. (рис 4.2 а-в)
Появление в электрических цепях несинусоидальных напряжений и токов может привести к весьма нежелательным последствиям. Несинусоидальные токи вызывают дополнительные потери мощности, ухудшают характеристики двигателей, создают большие помехи в линиях связи, каналах телемеханики и т. д. Заметим, что допустимое содержание гармоник оценивается
коэффициентом гармоник Кг. Для промышленных сетей Кг≤ 5%, т. е. в этом случае кривая напряжения на экране осциллографа визуально не отличается от синусоиды и это напряжение длительно допустимо на выводах любого приемника электрической энергии.
4.2 Способы представления периодических несинусоидальных величин.
Периодические несинусоидальные величины могут быть представлены временными диаграммами, тригонометрическим рядом Фурье, а также эквивалентными синусоидами. Наиболее наглядными, дающими полное представление о несинусоидальной величине являются временные диаграммы, т. е. графики зависимости мгновенных значений от времени (рис. 4.2-4.3)
Несинусоидальные ЭДС, токи и напряжения, с которыми приходится встречаться в электротехнике и промышленной электронике, являются периодическими функциями, удовлетворяющими условиям Дирихле и, следовательно, могут быть представлены тригонометрическим рядом Фурье:
Тригонометрический ряд может быть представлен как в виде суммы синусов (синусный ряд), так и суммы косинусов (косинусный ряд) гармонических составляющих.
В зависимости от характера реальной кривой f(ωt) тригонометрический ряд может не содержать постоянной составляющей, четных или нечетных высших гармоник, а также начальных фаз. Например, тригонометрические ряды Фурье некоторых несинусоидальных напряжений имеют вид:
напряжение на нагрузке при однополупериодном выпрямлении (см. рис.4.1,а)
напряжение на нагрузке при двухполупериодном выпрямлении (см.рис. 4.1,б)
напряжение треугольной формы (см. рис 4.2,а)
напряжение прямоугольной формы (см. рис. 4.2,б)
В практических расчетах цепей с несинусоидальными ЭДС, токами и напряжениями их мгновенные значения приближенно отображают конечным рядом Фурье (3—7 членов ряда). Число членов ряда определяется необходимой точностью расчета.
Характеристика несинусоидальных величин, представленных рядом Фурье, может быть осуществлена графически с помощью диаграмм амплитудно-частотного (рис. 4.3), фазо-частотного (рис. 4.2) спектров.
Данные диаграммы характеризуют форму несинусоидальных кривых, причем первая диаграмма показывает спектральный состав по амплитудам, т. е. представляет зависимость амплитуд гармоник в относительных единицах от частоты, вторая диаграмма выражает зависимость начальных фаз гармоник от частоты.
Периодические несинусоидальные ЭДС, напряжения и токи могут быть представлены так же эквивалентными синусоидами (см. параграф 4.5.)
4.3 Основные соотношения для несинусоидальных величин.
Дата добавления: 2021-04-21; просмотров: 369;