Структура и свойства чугунов.
Чугунами называют железоуглеродистые сплавы, содержащие более 2,14% углерода. В машиностроении чугун является одним из основных литейных материалов, что объясняется прежде всего его хорошими литейными и прочностными свойствами. Он не подвергается обработке давлением. Главным фактором, определяющим свойства, а, следовательно, и область применения чугуна, является его структура, которая может быть разнообразной.
По структуре чугуны делят на белые,серые, ковкие и высокопрочные.
9.1. Белые чугуны.
Белым называется чугун, в котором весь углерод находится в химически связанном состоянии в виде цементита Fe3C, который придает излому чугуна белый блестящий цвет.
Фазовые превращения в этих чугунах протекают согласно метастабильной диаграмме Fе - Fe3С (см. рис.23). По структуре белые чугуны делятся на:
а) доэвтектические, содержащие от 2,14 до 4,3 С. Они состоят из перлита, ледебурита и вторичного цементита, выделяющегося из зерен аустенита в интервале температур от 1147° (линия ЕС) до 727° (линия SК). Вторичный цементит сливается с цементитом ледебурита и может быть не виден на микрошлифе как самостоятельная структурная составляющая (рис. 51,а);
б) эвтектические, содержащий 4,3% С. Он состоит из эвтектики -ледебурита, представляющего собой механическую смесь цементита и перлита (рис. 51,б);
. в) заэвтектические, содержащие от 4,3% до 6,67% С. Они состоят из первичного цементита, выделяющегося в виде крупных пластин и ледебурита (рис. 51, в).
а) б) в)
Рис. 51.Структура белого чугуна: а) доэвтектического б) эвтектического в) заэвтектического
В микроструктуре белого чугуна содержится много цементита, поэтому он очень тверд и хрупок, но хорошо сопротивляется износу. Он почти не поддается обработке резанием (за исключением абразивного), поэтому белые чугуны не находят непосредственного применения в машиностроении, их используют редко, только для изготовления деталей, работающих в условиях повышенного абразивного изнашивания (детали гидромашин, пескометов и др.). Будучи главным продуктом доменной плавки, этот чугун используется вметаллургии для передела в сталь (передельный чугун). В незначительном количестве белый чугун применяется также для получения ковкого чугуна.
9.2. Серые чугуны.
Серым называется чугун, в котором углерод находится в виде гра- фита, имеющего форму слегка изогнутых пластин или чешуек, или разветвленных розеток с пластинчатыми лепестками. Вследствие большого количества графита в структуре такой чугун в изломе имеет серый цвет.
Содержание углерода в серых чугунах обычно колеблется в пределах 2,5...4%, при этом до 0,83% углерода находится в химически связанном с железом состоянии. Серые чугун помимо железа и углерода содержат также кремний, марганец, серу, фосфор и т.д.
Кремний способствует процессу графитизации, уменьшает усадку, кремний входит в состав феррита, образуя с α-железом твердый раствор замещения.
Марганец увеличивает склонность чугуна к сохранению цементита, а следовательно, и увеличивает твердость чугуна.
Сера - вредная примесь чугунов, она повышает их твердость и хрупкость в 5-6 раз больше, чемMn и значительно ухудшает литейные свойства.
Фосфор в небольших количествах в чугунах является полезной примесью (в отличие от сталей), улучшает литейные свойства серого чу- гуна, так как фосфор образует эвтектику Fe+Fe2P, плавящуюся при тем- пературе 983°С, что ценно для производства тонкостенного дутья. Химический состав серых чугунов: 2,5…4% С; 1,0…4,8% Si; 0,5…0,7% Mn; до 0,12% S; 0,2…0,5% P.
По структуре металлической основы серые чугуны подразделяют в основном на следующие группы;
1. Перлитные. Структура П+ПГ (пластинчатый графит), металлическая основа - П, а количество связанного углерода (Fe3C) равно эвтектоидной концентрации 0,8% (рис. 52, а).
2. Ферритно-перлитные. Структура Ф +П+ПГ, металлическая основа их состоит из Ф + П, а количество Fe3C меньше эвтектоидной концентрации (рис. 52, б).
3. Ферритные. Структура Ф + ПГ. Основа их состоит из Ф , а Fe3C=0 (рис. 52, в).
а) б) в)
Рис.52.Структура серого чугуна: а)перлитного б) ферритно-перлитного в)ферритного
Механические свойства чугуна зависит от свойства металлической основы, количества и размеров графитных включений. При конструировании деталей машин следует учитывать, что серые чугуны работают на сжатие лучше, чем на растяжение. Они мало чувствительны к надрезам при циклическом нагружении, хорошо поглощают колебания при вибрациях, обладают высокими антифрикционными свойствами из-за смазывающей способности графита. Серые чугуны хорошо обрабатываются резанием, дешевы и просты в изготовлении. Наряду с этими положительными свойствами они имеют сравнительно невысокую прочность и чрезвычайно низкую пластичность.
Марка серого чугуна состоит из букв СЧ (серый чугун) и цифры, показывающей уменьшенное в 10 раз значение (в мегапаскалях) временного сопротивления при растяжении (табл.7 ).
Прочность чугуна существенно зависит от толщины стенки отливки. Указанное в марке значение σв соответствует отливкам с толщиной стенки 15 мм. При увеличении толщины стенки от 15 до 150 мм прочность и твердость чугуна уменьшаются почти в два раза.
Графит, ухудшая механические свойства, в то же время придает чугунам ряд ценных свойств. Он измельчает стружку при обработке ре- занием, оказывает смягчающее действие и, следовательно, повышает из- носостойкость чугунов, придает им демпфирующую способность. Кроме того, пластинчатый графит обеспечивает малую чувствительность чугу- нов к дефектам поверхности. Благодаря этому сопротивления усталости чугунных и стальных деталей соизмеримы.
Согласно ГОСТ 1412-85 отливки изготавливают из серого чугуна следующих марок: СЧ10, СЧ15, СЧ18, СЧ20, СЧ25, СЧ30, СЧ35. Цифры в обозначении марки соответствуют минимальному пределу прочности при растяжении ( σв , кгс/мм2). Чугун СЧ10 - ферритный, а начиная с СЧ25 и более - перлитные, промежуточные - ферритно-перлитные.
Из ферритных чугунов изготавливают в основном неответственные детали, к которым предъявляются главным образом требования хорошей обрабатываемости резанием, а не прочности, например, плиты, грузы, корыта, крышки, кожухи и др.
Из ферритно-перлитных чугунов в автомобилестроении изготавливают картеры, тормозные барабаны, крышки, поршни, поршневые кольца, крупные шкивы, зубчатые колеса и др.
Из перлитных - блоки цилиндров, гильзы, маховики и др. В станкостроении серый чугун является основным конструкционным материалом (станины станков, столы и верхние салазки, шпиндельные бабки, колонки, каретки и т.д.), К износостойким относится отбеленный серый чугун(0Ч), имеющий тонкий поверхностный слой со структурой белого чугуна. применяется для изготовления отливок прокатных валков, вагонных колёс и т.д.
Ковкие чугуны.
Название "ковкий чугун" является условным, поскольку изделия из него, как и из любого другого чугуна изготавливают не ковкой, а литьем. Название "ковкий" этот чугун получил вследствие более высоких, по сравнению с серыми чугунами пластических свойств.
Принципиальная схема технологии получения деталей из ковкого чугуна состоит из двух операций. Сначала путем отливки из белого доэвтектического чугуна получают детали (рекомендуемый химический состав заливаемого в формы сплава: 2,4...2,9% С; 1,0...1,6% Si ; 0,3...1,0% Мn ; ≤ 0,1% S; ≤ 0,2% Р, затем полученные отливки подвергают специальному графитизирующему отжигу (томлению). Отжиг состоит обычно из двух стадий (рис. 53).
Вначале отливки из белого чугуна (чаще упакованные в ящики с песком) медленно нагревают в течение 20...25 ч до температуры 950...1050°С. И при этой же температуре длительно их выдерживают (в течение 10...15 ч). В этот период протекает первая стадия графитизации, т.е. распад цементита, входящего в состав ледебурита(А +Fe3С), и установление стабильного равновесия аустенит + графит.
В результате распада цементита образуется хлопьевидный графит (углерод отжига).
Металлическая основа чугуна формируется на второй стадии отжига при эвтектоидном превращении. В случае непрерывного охлаждения отливки (на воздухе) в области эвтектоидной (727°С) температуры аустенит распадается на перлит и процесс графитизации не успеет охватить цементит перлита. Чугун принимает структуру: перлит пластинчатый + хлопьевидный графит (ХГ) Он обладает высокими твердостью, прочностью и небольшой пластичностью (НВ 235...305, σв = 650... 680 МПа, δ = 3,0...15%). Для повышения пластичности при сохранении достаточно высокой прочности проводится непродолжительная (2...4 ч) изотермическая выдержка чугуна или замедленное охлаждение при температурах 690...650°С. Это вторая стадия отжига, представляющая собой в данном случае отжиг на зернистый перлит.
Рис. 53. График отжига белого чугуна на ковкий
В машиностроении широко применяется ферритный ковкий чугун, характеризующийся высокой пластичностью (δ = 10...12%) и относи -тельно низкой прочностью (σв = 370...300 МПа). Ферритная основа чугуна образуется при очень медленном прохождении интервала 760... 720° С или в процессе изотермической выдержки при 720...700°С. Здесь аустенит и цементит, в том числе и цементит перлита, если перлит успел обрадоваться, распадается на феррит + хлопьевидный графит. Хлопьевидная форма графита является основной причиной более высокой прочности и пластичности ковкого чугуне по сравнению с серым чугуном (см. табл.7).
Продолжительность отжига в целом составляет 48...96 ч (длительность II стадии примерно в 1,5 раза больше, чем I). Для сокращения продолжительности отжига в расплав перед его разливкой по формам (вводится (модифицируют) алюминий (реже бор, висмут и др.), что создает дополнительные искусственные центры образования графита. Согласно ГОСТ 1215-79 выпускают следующие марки ковких чугунов КЧ30-8 , КЧ35-10, КЧ37-12, КЧ45-7, КЧ50-5, КЧ55-4, КЧ60-3, КЧ65-3, КЧ70-2, КЧ80-1,5. Первые две цифры соответствуют минимальному пределу
прочности при растяжении (σв,кгс/мм2); цифры после тире - относительное удлинение (δ , %)
Ковкие чугуны применяются для деталей, работающих при ударных вибрационных нагрузках (ступицы, тормозные колодки, коленчатые валы, крюки, картеры редукторов и др.).
Основным недостатком получения КЧ является длительный отжиг отливок и ограничение толщины их стенок (до 50 мм). В пассивных деталях в результате замедленного охлаждения при кристаллизации возникает пластинчатый графит (вместо хлопьевидного), который снижает прочность и пластичность чугуна.
Таблица 7. Механические свойства чугунов.
Марка чугуна | σв | σ0,2 | δ ,% | НВ | Структура металлической основы |
МПа |
Серые чугуны (ГОСТ 1412 - 85)
СЧ 10 | - | - | -190 | Ф | |
СЧ 15 | - | - | 163-210 | Ф | |
СЧ 25 | - | - | 180-245 | Ф+П | |
СЧ 35 | - | - | 220-275 | П |
Высокопрочные чугуны (ГОСТ 7293 - 85)
ВЧ 35 | 140-170 | Ф | |||
ВЧ 45 | 140-225 | Ф+П | |||
ВЧ 60 | 192-227 | Ф+П | |||
ВЧ 80 | 248-351 | П | |||
ВЧ 100 | 270-360 | Б |
Ковкие чугуны (ГОСТ 1215 – 79
КЧ 30 – 6 | - | 100-163 | Ф+до10%П | ||
КЧ 35 – 8 | - | 100-163 | |||
КЧ37 – 12 | - | 110-163 | |||
КЧ45 – 7 | - | 150-207 | |||
КЧ 60 - 3 | - | 200-269 | П+до20%Ф | ||
КЧ 80-1,5 | - | 1,5 | 270-320 |
9.4. Высокопрочные чугуны.
Высокопрочный чугун получают при модифицировании (микролегировании жидкого чугуна магнием (0,1...0,5%) или церием (0,2...0,3%). При этом под действием магния графит в процессе кристаллизации принимает не пластинчатую, а шаровидную форму. Микроструктура модифицированного чугуна на ферритной и на перлитной основе приведена на рис. 54, а, б.
а) б)
Рис. 54. Структура высокопрочного чугуна: а)ферритного б) перлитного
Основной причиной высоких механических свойств высокопрочного чугуна (табл. 7) является шаровидная форма графита. Шаровидный графит, имеющий минимальную поверхность при данном объеме, значительно меньше ослабляет металлическую основу чугуна, чем пластинчатый графит. В отличие от последнего он не является активным концентратором напряжений.
Согласно ГОСТ 7293-85, отливки изготавливают из высокопрочного чугуна следующих марок: ВЧ35, ВЧ40, ВЧ45, ВЧ50, ВЧ60, ВЧ70, ВЧ80, ВЧ100 (цифры в обозначении соответствуют минимальному пределу прочности при растяжении σв , кгс/мм2)
Высокопрочный чугун имеет высокие механические характеристики, обладает хорошими литейными и технологическими свойствами. Он применяется как новый материал и как заменитель стали, ковкого и серого чугуна с пластинчатым графитом. По сравнению со сталью обладает большей износостойкостью, лучшими антифрикционными и антикоррозионными свойствами, лучшей обрабатываемостью резанием, Вследствие меньшей плотности отливки легче стальных на 8...10%. Из высокопрочного чугуна, в отличие от ковкого, можно отливать детали любого сечения, массы и размеров.
Области применения: в станкостроении - суппорты, резцедержатели, тяжелые планшайбы, шпиндели, рычаги и др.; для прокатного и кузнечно-прессового оборудования - прокатные валки, станины прокатных станов и ковочных молотов, шаботы, траверсы прессов; для других видов оборудования - барабаны тельферов экскаваторов, коленчатые валы и т.д.
9.5. Легированные чугуны.
Требования к легированным чугунам для отливок с повышенной жаростойкостью, коррозионной стойкостью, износостойкостью или жаропрочностью регламентированы ГОСТ 7769-82. Марки легированных чугунов и их свойства приведены в табл. 8.
Легированные чугуны подвергаются термической обработке для обеспечения необходимых свойств и структуры.
Важным свойством легированных чугунов является сопротивление износу.
В качестве антифрикционных используются чугуны по ГОСТ 1585-85. Они предназначены для изготовления деталей, работающих в узлах трения со смазкой. Стандарт определяет марки антифрикционных чугунов, их химический состав, характеристики, назначение, форму, размер и распределение графита, дисперсность перлита, характер распределения фосфидной эвтектики, твердость и предельные режимы эксплуатации деталей из этих чугунов. Основой их является железо, постоянные компоненты, %: 2,2-4,3 С; 0,5-4,0 Si; 0,3-12,5 Mn. Допускаются примеси, % : 0,1-1 Р; 0,03-0,2 S.
Марки антифрикционных чугунов, их характеристики и на значение представлены в табл. 9.
Таблица 8.
Марки и свойства легированных чугунов(ГОСТ 7769-82)
Марка чугуна | Свойства |
ЧХ1, ЧХ2, ЧХ3 | Чугуны, обладающие повышенной коррозионной стойкостью в газовой, воздушной и щелочной средах в условиях трения и износа, жаростойкие в воздушной среде, выдерживают температуру от 500 до 700˚. предназначены дл изготовления деталей металлургического производства, кокилей стеклоформ, деталей химического оборудования и др. |
ЧХ3Т, ЧХ9Н5, ЧХ22, ЧХ16М2, ЧХ28Д2 | Чугуны, обладающие повышенной стойкостью против абразивного износа и истирания |
ЧХ22С | Этот чугун характеризуется повышенной коррозионной стойкостью при температуре 1000˚С |
ЧС13, ЧС15, ЧС17, ЧС15МА, ЧС17М3 | Устойчивы к воздействию концентрированных и разбавленных кислот, растворов щелочей, солей |
ЧГ6С3Ш, ЧГ7Х4 | Чугуны, обладающие высокой стойкостью в абразивной среде |
ЧГ8Д3 | Немагнитный износостойкий чугун |
ЧНХТ, ЧНХМД, ЧН2Х, ЧНМШ | Чугуны с высокими механическими свойствами, хорошо сопротивляются износу и коррозии |
ЧН15Д3Ш, ЧН19Х3Ш, ЧН11Г7Ш, ЧН20Д2Ш, ЧН15Д7 | Чугуны, обладающие высокими механическими свойствами, высокой коррозионной и эрозионной стойкостью в щелочах, слабых растворах кислот, в морской воде. Чугун ЧН20Д2Ш может быть пластически деформирован в холодном состоянии |
Таблица 9.
Марки антифрикционных чугунов, их свойства и назначение
(ГОСТ 1585-85)
Марка чугуна | Свойства и назначение |
АЧС-1 | Перлитный чугун, легированный хромом (0,2-0,5 %) и медью (0,8-1,6%); предназначен для изготовления деталей, работающих в паре с закаленным или нормализованным валом |
АЧС-2 | Перлитный чугун, легированный хромом (0,2-0,5%), никелем (0,2-0,5%), титаном (0,03-0,1%) и медью (0,2-0,5%); назначение - такое же, как и чугуна марки АСЧ-1 |
АЧС-3 | Перлитно-ферритный чугун, легированный титаном (0,03-0,1 %) и медью (0,2-0,5 %); детали из такого чугуна могут работать в паре, как с "сырым", так и с термически обработанным валом |
АЧС-4 | Перлитный чугун, легированный сурьмой (0,04-0,4%); используется для изготовления деталей, работающих в паре с закаленным или нормализованным валом |
АЧС-5 | Аустенитный чугун, легированный марганцем (7,5—12,5 %) и алюминием (0,4-0,8%); из этого чугуна изготавливают детали, работающие в особо нагруженных узлах трения в паре с закаленным или нормализованным валом |
АЧС-6 | Перлитный пористый чугун, легированный свинцом (0,5-1,0%) и фосфором (0,5-1,0%); рекомендуется для производства деталей, работающих в узлах трения с температурой до 300 ˚ С в паре с "сырым" валом |
АЧВ-1 | Перлитный чугун с шаровидным графитом; детали из такого чугуна могут работать в узлах трения с повышенными окружными скоростями в паре с закаленным или нормализованным валом |
АЧВ-2 | Перлитно-ферритный чугун с шаровидным графитом; изготовленные из этого чугуна детали хорошо работают в условиях трения с повышенными окружными скоростями в паре с "сырым" валом |
АЧК-1 | Перлитный чугун с хлопьевидным графитом, легированный медью (1,0-1,5%); предназначен для изготовления деталей, работающих в паре с термически обработанным валом |
АЧК-2 | Ферритно-перлитный чугун с хлопьевидным графитом; детали из этого чугуна работают в паре с "сырым" валом |
Буквы в обозначениях марок чугунов означают: АЧ - антифрикционный чугун, С - серый чугун с пластинчатым графитом, В - высокопрочный чугун с шаровидным графитом, К — ковкий чугун с хлопьевидным графитом. Твердость отливок из антифрикционных чугунов (от 100 до 290 НВ) зависит от содержания элементов и условий термической обработки.
Предельные режимы работы деталей из этих чугунов в узлах трения: удельное давление (50 - 300) 104 Па (5-300 кгс/см2), окружная скорость 0,3-10 м/с.
Дата добавления: 2016-12-16; просмотров: 15848;