Пространственная (третичная) обработка информации.


Третичная (мультирадарная) обработка – это процесс обработки сигналов или объединения первичной РЛИ по пространству с целью улучшения характеристик радиолокационного наблюдения.

 

 

 

Если сигналы или первичную РЛИ, полученные в отдельных пунктах наблюдения, передать и сосредоточить в некотором центре обработки, то это позволит использовать дополнительную энергетику, корреляционные связи и пространственное подобие первичной РЛИ об одной цели от разных источников.

Энергетика принятого сигнала, которую можно использовать, пропорциональна суммарному раскрыву разреженной антенны.

Корреляционные связи принятых в разных точках пространства сигналов определяются расстоянием между этими точками и интервалом пространственной корреляции рассеянного или излученного целью сигнала. Последний определяется длиной волны l, раскрывом антенны излучающей системы Lа и расстоянием от цели до зоны анализа Rц: . Если расстояние между пунктами приема Dl меньше интервала пространственной корреляции сигнала dl, то принятые в этих пунктах приема сигналы являются коррелированными и их коэффициент корреляции можно считать равным

. (10.15)

В противном случае сигналы некоррелированы.

Пространственное подобие первичной РЛИ об одной цели от разных источников, обусловленное фактическим наличием цели в определенной точке пространства, может быть использовано для отождествления РЛИ.

Техническим средством третичной обработки является многопозиционная радиолокационная система (МП РЛС), которая включает несколько разнесенных в пространстве приемных, передающих или приемопередающих позиций и в которой производится совместная обработка сигналов, поступающих от этих позиций. Центр совместной обработки соединяется линиями связи со всеми позициями.

Можно назвать три способа пространственного объединения сигналов и первичной РЛИ:

· пространственно-когерентное объединение сигналов с привязкой позиций по времени, частоте и фазе принятых колебаний;

· частичное (неполное) пространственно-когерентное объединение сигналов с привязкой позиций по времени и частоте;

· пространственно-некогерентное объединение сигналов и первичной РЛИ с привязкой позиций только по времени.

В пространственно-когерентных МП РЛС взаимные фазовые сдвиги сигналов в трактах разнесенных позиций и линиях связи известны и сохраняются практически неизменными на интервале времени, намного превышающем время наблюдения сигнала. В таких РЛС необходима взаимная привязка не только по времени и частоте, но и по начальным фазам колебаний. Это можно обеспечить с помощью опорного сигнала, позволяющего измерять фазовые сдвиги и осуществлять коррекцию или учет при обработке.

В пространственно-когерентных МП РЛС с частичной пространственной когерентностью, которая сохраняется на интервале времени порядка времени наблюдения, информация о начальных фазах сигналов не используется. Привязка позиций осуществляется только по времени и частоте.

В пространственно-некогерентных МП РЛС фазовая информация полностью исключается в результате детектирования сигналов до их объединения. Объединение сигналов может осуществляться на следующих уровнях:

· объединение видеосигналов после детектирования в каждой позиции;

· объединение обнаруженных отметок и единичных замеров; при этом вся первичная обработка проводится на каждой позиции, а на совместную обработку поступает только полезная информация;

· объединение траекторий, при этом первичная и вторичная обработка проводится на каждой позиции. Параметры траектории передаются в центр обработки, в результате которой отсеиваются «ложные» траектории.

Принято различать следующие группы МП РЛС:

· пространственно-некогерентные МП РЛС;

· активные пространственно-когерентные МП РЛС с кратковременной пространственной когерентностью;

· пассивные пространственно-когерентные МП РЛС, в которых используется излученный целью сигнал;

· пространственно-когерентные МП РЛС с продолжительной пространственной когерентностью.

Пространственно-разнесенные МП РЛС обладают следующими свойствами:

1. Высокие энергетические характеристики из-за использования энергии каждой передающей позиции всеми приемными.

2. Высокоточное измерение пространственного положения целей с использованием слабонаправленных антенн.

3. Возможность измерения не только трех координат, но и векторов скорости и ускорения.

4. Увеличение объема сигнальной информации для решения задач распознавания классов обнаруженных целей.

5. Повышение помехозащищенности от активных и пассивных помех.

6. Повышение живучести.

К недостаткам следует отнести следующее:

1. Необходимость совместного управления позициями.

2. Необходимость передачи данных по линиям связи.

3. Дополнительные требования по взаимной привязке.

4. Повышение требований к устройствам обработки.

5. Необходимость геодезической или навигационной привязки.

Таким образом, применение МП РЛС целесообразно при высоких требованиях к информативности, помехоустойчивости, живучести.



Дата добавления: 2021-02-19; просмотров: 522;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.