Определение коэффициентов аппроксимирующей функции
При определении коэффициентов широко используют метод выбранных точек, в соответствии с которым значения коэффициентов определяют исходя из совпадения значений функции со значениями аппроксимирующей функцией в ряде заранее выбранных точек, называемых узлами интерполяции.
Если при аппроксимации ВАХ, задаваемой множеством точек выбрана функция:
, (19)
имеющая неизвестных коэффициентов , то для определения этих коэффициентов выбирают наиболее характерных точек, лежащих в пределах рабочей области.
Подставляя в уравнение (19) выбранные значения , , получают систему из -уравнений , решение которой дает искомые коэффициенты .
Очевидно, найденные коэффициенты обеспечивают совпадение значений заданной и аппроксимирующей функции в узлах интерполяции, однако в промежутках между ними погрешность аппроксимации может быть весьма существенной.
Пример 3. Определите значения коэффициентов экспоненциальной функции , аппроксимирующей ВАХ кремниевого диода (см. табл. 3) в диапазоне напряжений от 0 до 1В.
Возможность аппроксимации ВАХ диода экспоненциальным полиномом доказана в примере 2. Там же определена постоянная =-0,085.
Составим уравнение прямой (см.рис.19):
, (20)
где , и , – координаты двух любых точек, через которые проходит данная прямая.
Выбираем =0, =-2,47 и =1, =-0,962 и получаем уравнение прямой:
. (21)
Сравнивая это выражение с прологарифмированным выражением (14):
, (22)
получаем соотношения для определения неизвестных значений коэффициентов и :
=-2,47, =1,538,
откуда =0,085.
Таким образом аппроксимирующая функция:
,
или .
На рис.20 построена аппроксимирующая кривая и нанесены табличные знчения.
Рис.20. Аппроксимация ВАХ диода
На практике для аппроксимации характеристик в основном используют степенные полиномы:
, (23)
и кусочно-линейные функции.
Дата добавления: 2016-10-26; просмотров: 3004;