Тема лекции: Комплексонометрия.


План лекции:

1. Сущность метода комплексонометрии

2. Индикаторы метода

3. Преимущества метода комплексонометрии

4. Применение метода комплексонометрии в технохимическом контроле пищевых производств.

Комплексонометрия входит в группу методов титриметрического анализа, в основе которых лежат реакции комплексообразования. Эта группа методов объединяется под общим названием комплексонометрия.

Особенностью комплексонометрии является то, что в качестве основных титрантов в ней используются специ­фические вещества - комплексоны, образующие с опреде­ляемыми реагентами (катионами металлов) так называе­мые хелатные (внутрикомплексные) соединения. Комплексоны – это вещества, относящиеся к группе аминополикарбоновых кислот.

Хотя число комплексонов в настоящее время состав­ляет не одну сотню, под термином «комплексонометрия» («хелатометрия») обычно подразумевают титрова­ние солями этилендиаминтетрауксусной кислоты, ча­ще всего двузамещенной натриевой солью Na2H2Y • 2Н20, широко известной под названием комплексон III, трилон Б. Структурно-графическая формула этого соедине­ния:

 

 

NaOOC - H2C CH2 - COONa

N-CH2-CH2-N
HOOC-H2C CH2-COOH

Таким образом, основным рабочим раствором комплексонометрии является Na2H2Y • 2Н20. Эта соль легко полу­чается в чистом виде, хорошо растворима в воде, растворы устойчивы при хранении. В обычных условиях препарат содержит примерно 0,3 % влаги, поэтому титрованные растворы ЭДТА можно приготовить по точной навеске (с учетом 0,3 % Н20). Применяемые для титрования растворы ЭДТА имеют концентрацию 0,01-0,05 моль/л и реже – 0,1 моль/л.

Наиболее ценным свойством ЭДТА как титранта явля­ется его способность реагировать с ионами металлов в со­отношении 1:1 независимо от заряда катиона. Эти реак­ции могут быть записаны в виде:

Ме2+ + H2Y2- ↔ MeY2- + 2Н+;

МеЗ+ + H2Y2- ↔ MeY2- + 2Н+;

Ме4+ + H2Y2- ↔ MeY2- + 2Н+,

где H2Y2- - анион двузамещенной соли ЭДТА.

В какой-то мере все катионы реагируют с ЭДТА, за ис­ключением катионов щелочных металлов. Высокая ус­тойчивость комплексов обусловлена наличием в молекуле ЭДТА нескольких донорных групп.

Упрощенная схема взаимодействия ЭДТА с ионом, двухвалентного металла, например Са2+ с образованием хелатного соединения может выглядеть так:

Na2H2Y2 +Ca2+ ↔ Na2CaY + 2H +

При взаимодействии иона металла и ЭДТА в процессе титрования происходит выделение ионов водорода. Учи­тывая обратимость этого взаимодействия, полноту про­текания реакции увеличивают при повышении рН рас­твора, что достигается введением в раствор аммиачного буфера или щелочи. В некоторых случаях, однако, при повышении рН может образовываться гидроксид метал­ла. Поэтому при работе с комплексоном добиваются оп­тимального значения рН раствора, зависящего от проч­ности комплекса и растворимости соответствующего гидроксида. Например, ион Fe3+ образует очень прочный комплекс с трилоном Б и очень труднорастворимый гид­роксид. Реакция комплексообразования может проте­кать при рН не выше 3. Катион кальция, наоборот, обра­зует сравнительно хорошо растворимый гидроксид и ма­лоустойчивый комплекс, реакция с комплексоном воз­можна при рН 9 - 10.

Указанные выше свойства комплексонов широко используют для комплексонометрического титрования многих катионов и анионов (косвенным методом). Для этого применяют метод прямого и обратного титрования и др.

Метод прямого титрования. Титрование ведут при определенном значении рН стандартным (рабочим) раствором ЭДТА. Точку эквивалентности устанавливают с помощью индика­торов: мурексида, кислотного хрома черного, эриохрома черного Т и др. Эти индикаторы представляют собой органические краси­тели, образующие с катионами окрашенные комплексные соеди­нения (металл-индикаторы).

При титровании комплексоном такого окрашенного комплекс­ного соединения оно постепенно разлагается вследствие образова­ния нового более прочного внутрикомплексного соединения катио­на с комплексоном. В точке эквивалентности первоначальный цвет комплексного соединения, образуемого индикатором с определяе­мым катионом, исчезает и появляется окраска, свойственная свободному индикатору.

Метод обратного титрования. К анализируемому раствору прибавляют измеренный объем стандартного раствора ЭДТА, избыток которого оттитровывают стандартным раствором соли цинка в присутствии металл-индикатора, реагирующего с ио­нами цинка.

Комплексонометрические индикаторы.

Некоторые органические красители образуют с катионами металлов окрашенные комплек­сы с гораздо меньшими значениями рК, т. е. гораздо менее стой­кие, чем комплексы, образующиеся с комплексонами, из которых готовят рабочие растворы в комплексонометрии. Такие окрашен­ные соединения, образующие с определяемыми ионами металлов малоустойчивые комплексы, используют в качестве комплексонометрических индикаторов. Окраска комплексного соединения ин­дикатора отличается от окраски свободного индикатора. Поэтому в процессе титрования комплексное соединение индикатора с ка­тионом металла разрушается и индикатор выделяется в свобод­ном виде, при этом происходит изменение окраски титруемого рас­твора, особенно заметное в точке эквивалентности. Схематически это можно представить следующим образом

до титрования

Kt2+ + 2HInd —► Ktlnd2 + 2H+

бес- синий красный

цветный

во время титрования и в точке эквивалентности

KtInd2 + H2Y2- ↔ KtY2- + 2HInd

красный бес- бес- синий

цветный цветный

В качестве индикаторов в комплексонометрии применяют мурексид, эриохром черный Т (хромоген специальный ЕТОО), кислотный хром темно-синий и некоторые другие.

М у р е к с и д NH4 (C8O6H5N5) • Н20 — аммонийная соль пурпу­ровой кислоты представляет собой порошок темно-красного цвета, плохо растворимый в воде, его 0,05%-ный раствор окрашен в фио­летово-красный цвет. С катионами многих металлов мурексид об­разует очень нестойкие комплексы красного или желтого цвета.

Водный раствор мурексида неустойчив, поэтому для работы приготовляют сухую смесь индикатора с NaCl в отношении 1 : 100, которую и прибавляют в титровальную колбу в количестве 20— 30 мг.

Анион мурексида окрашен в фиолетовый, а образуемый им с катионом металла комплекс — в красный цвет.

Э р и о х р о м ч е р н ы й Т — диазокраситель, обладающий свой­ствами кислотно-основного индикатора, с точками перехода при рН=6,3 из неярко-красного в синий и при рН = 11,5 из синего в оранжевый. Индикатор окрашен в синий цвет. Окраска комплек­са с ионами металлов красная.

Эриохром черный Т растворим в спирте, но растворы неустой­чивы. Удобнее пользоваться сухой смесью с NaCl, приготовленной в соотношении 1 : 200.

Кислотный х р о м т е м н о - с и н и й C16H1009N2S2Na2 — ор­ганический краситель. Этот индикатор по своим свойствам и окрас­ке комплексов похож на эриохром черный Т, но более чувствите­лен. Хорошо растворяется в спирте и ограниченно — в воде. Рас­творы устойчивы, что позволяет использовать их для работы, не прибегая к сухим смесям.

Преимущества комплексонометрического метода.

Введение комплексонов в аналитическую практику расширило возможности хи­мического анализа вообще и объемного метода в частности.

Как было указано ранее, объемно-аналитические методы анали­за отличаются простотой и скоростью, что имеет решающее значе­ние в практике промышленных лабораторий. Но до введения комплексонов объемно-аналитическими методами можно было опреде­лять лишь ограниченное число металлов. Комплексоны же позво­ляют определять объемными методами почти все металлы. Только ЭДТА образует комплексы с 44 катионами, из которых только Ag+ Hg2+, Ва2+ и катионы щелочных металлов обычно комплексонометрически не определяются (ртуть можно определять методом обратного титрования).

Большим достоинством комплексонов является то, что в ряде слу­чаев представляется возможность титровать одни катионы в при­сутствии других, не прибегая к предварительному их разделению.

Комплексоны, являясь кислотами или их кислыми солями, при взаимодействии с катионами независимо от их степени окисления образуют ионы водорода, например:

Са2++ H2Y2- → CaY2- + 2H+

Поэтому титрование комплексонами можно проводить по методу нейтрализации, пользуясь кислотно-основными индикаторами.

Комплексонометрический метод используется для определения жесткости воды. Присутствие в воде растворимых солей кальция и магния определяет ее жесткость. Жесткая вода обладает рядом отрицательных свойств: дает осадки в виде накипи в котлах, снижает моющую способность мыл, ухудшает развариваемость отдельных продуктов и т. п. Различают временную, устранимую, или карбонатную, жесткость, обусловленную присутствием бикарбонатов Ca(HС03)2 и Mg(HCO;3)2, и постоянную, или неустранимую, жесткость, связанную с содержанием хлоридов и сульфатов кальция и магния. Сумма временной и постоянной жесткости определяет ее общую жесткость.

Жесткость воды определяют по содержанию в ней солей кальция и магия и выражают числом миллиграмм-эквивалентов их в 1 л воды (1 мг-экв = 1/1000 г-экв). Мягкая вода содержит доли миллиграмм-эквивалента, а жесткая — десятки миллиграмм-эквивалентов указанных солей. Для проведения многих технологических процессов требуется мягкая вода, поэтому необходимо определять жесткость воды. Это определение можно сделать методом нейтрализации, например титрованием 100 мл воды 0,1 н. НСl, используя качестве индикатора метиловый оранжевый. В последнее время для определения жесткости воды стали использовать комплексонометрию, так как этот метод обладает высокой чувствительностью, требует небольших затрат времени и дает хорошие результаты.

Литература:

1. Панкратова Г.В., Жванко Ю.Н., Мамедова З.И. Аналитическая химия и технохимический контроль в общественном питании. – М.: Высшая школа, 1980. – с.114 – 119.

2. Шапиро С.А., Шапиро М.А. Аналитическая химия. – М.: Высшая школа, 1979. – с. 277 – 281.

 

 



Дата добавления: 2016-09-26; просмотров: 13376;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.