ГТУ с регулируемым сопловым аппаратом
Дальнейшее расширение области работы и приемистости двухвальной ГТУ может быть обеспечено введением в СТ регулируемого соплового аппарата (РСА). Для безрегенеративного цикла преимущества такой конструкции присутствуют не всегда. К такому решению может вынуждать неудачная характеристика осевого компрессора с близкой к рабочей линии границей помпажа, необходимость сузить рабочий диапазон изменения частот вращения ротора газогенератора из-за высоких напряжений в его лопаточных аппаратах и др.
Следует учитывать, что введение РСА не безболезненно для работы СТ. При его повороте с уменьшением угла установки КПД СТ снижается из-за уменьшения U/Co и появления положительных углов атаки на рабочие лопатки. Растет их вибронапряженность.
Введение РСА становится высокоэффективным в ГТУ регенеративного цикла. Здесь описанные издержки (в том числе удорожание регулирования) окупаются возможностью сохранения номинального КПД ГТУ вплоть до 70% нагрузки осуществлением программы регулирования T1=const.
Замкнутые ГТУ
Основная идея - повышение единичной мощности и эффективности ГТУ за счёт изменения массового расхода рабочего тела при неизменной степени повышения давления в цикле, что невозможно в ГТУ открытого цикла.
Принципиальная схема замкнутой ГТУ показана на рис. 1.6. Отработавший в турбине 3 газ после регенератора 6 не удаляется
Рис. 1.6 Принципиальная схема замкнутой ГТУ:
1-нагрватель (Воздушный котёл); 3-нагрузка; 3-турбина; 4-компрессор;
5-оладитель; 6-регенератор
в атмосферу, как в ГТУ открытого типа, а направляется в охладитель 5. Там он охлаждается до температуры Т3, при этом давление его снижается до P2. Охладитель представляет собой теплообменник поверхностного типа, в котором охлаждающей средой служит обычная вода. С точки зрения термодинамики, охладитель 5 выполняет роль теплоприёмника (холодного источника). Охлажденный газ поступает в компрессор 4, где сжимается от P2 до P1, за счет чего температура его повышается от Т3 до Т4. После компрессора газ направляется в регенератор 6, в котором подогревается за счёт газов, выходящих из турбины 3. В замкнутых ГТУ вместо камеры сгорания устанавливается нагреватель 1, в котором рабочее тело (газ или воздух) пропускается внутри трубок. Снаружи эти трубки нагреваются за счет тепла, выделяющего при сгорании топлива в топке, которая по принципу работы схожа с топкой паровых котлов. Поэтому нагреватель ГТУ иногда называют "воздушным котлом". В нагревателе 1, температура рабочего газа резко возрастает до Т1, далее газ поступает в турбину 3, где расширяется, совершая работу. Температура при этом падает до T2. Турбина вращает компрессор 4, а избыточную часть своей мощности отдает потребителю 2. Далее отработавший газ, имея достаточно высокую температуру, направляется в регенератор, где отдает часть своего тепла на подогрев газа, движущегося из компрессора 4 в нагреватель 1.
Затем цикл снова повторяется.
Нетрудно заметить, что в замкнутой ГТУ циркулирует одно и то же массовое количество рабочего тела, если не считать незначительной по величине утечки газа из контура через различные неплотности, которая автоматически восполняется из специального устройства (на рис. 1.6 не показано). Мощность установки регулируется изменением давления газа в её контуре за счет изменения массового расхода рабочего газа при сохранении практически неизменными степени повышения давления p, а также Т1 и Т3 (максимальной и минимальной температур цикла) с помощью специального центробежного регулятора (на рис. 1.3 также не показан). Кроме того, при уменьшении нагрузка число оборотов турбины уменьшается, т.е. уменьшается число циклов за единицу времена.
Замкнутее ГТУ по сравнению с открытыми обладают следующими преимуществами:
1) благодаря отсутствию в циркулирующем газе веществ, вызывающих коррозию и эрозию лопаточного аппарата, значительно повышается надёжность и долговечность турбины;
2) замкнутые ГТУ могут работать на любых видах топлива, в том числе на твердом и тяжелых сортах жидкого топлива (мазутах);
3) замкнутые ГТУ могут работать на атомной энергии;
4) путем повышения начального давления газа перед компрессором можно в широких пределах увеличивать его весовой расход в ГТУ. А это дает возможность либо в соответствующее число раз увеличить единичную мощность установки, либо же при неизменной мощности значительно снизить вес её за счёт уменьшения поверхности теплообменников, размеров ГТУ и диаметров трубопроводов;
5) в связи с тем, что в замкнутых ГТУ мощность регулируется изменением давления газа в контуре к.п.д. установки различных режимах нагрузки в широком диапазоне остаются неизменным;
6) в качестве рабочего тела можно использовать, кроме воздуха, любые газообразные вещества, либо обладающие лучшими теплофизическими свойствами, либо позволяющие сделать цикл установки более совершенным и выгодным о термодинамической точки зрения, либо имеющие какие-то другие ценные достоинства.
Примером тому может служить гелий, обладает лучшими теплофизическими свойствами, чем воздух, но он значительно дороже и отличается огромной текучестью. Однако то обстоятельство, что гелий при прохождении через атомный реактор не становиться радиоактивным, является решающим в деле использования его в качестве теплоносителя в атомных установках с газовыми реакторами.
Основной недостаток – громоздкость и сложность (громадный "воздушный" котел).
Многовальные ГТУ
Основная идея - деление турбины на две и более ступеней с их независимым друг от друга числом оборотов, что позволяет регулировать мощность ГТУ при частичных нагрузках, не снижая эффективности изменением расхода и топлива, и воздуха.
В настоящее время существует тенденция к увеличению единичной мощности ГТУ. Наиболее просто вопрос о повышении единичной мощности решается в замкнутых ГТУ. Там это достигается путем соответствующего увеличения давления, а, следовательно, и массового расхода газа, циркулирующего в замкнутом контуре.
Вопрос о повышении единичной мощности, а такие экономичности в открытых ГТУ в настоящее время решается путем применения многовальных схем. Многовальные ГТУ дают возможность повысить эффективность ГТУ особенно при работе на частичных (неполных) нагрузках. Это наглядно видно из рис. 1.7. Здесь Nэ - нагрузка, в процентном отношении; h - к.п.д. соответствующий различным значениям частичной нагрузки, т.е. при данной нагрузке; hн - к.п.д. при полной нагрузке; h/hн - относительный к.п.д. Из графика видно, что слабее всего снижается к.п.д. при уменьшения нагрузки у ГТУ замкнутого типа (кривая 3), в которой мощность регулируется изменением массового расхода рабочего газа при неизменной Т1. Наиболее резко снижается к.п.д. при уменьшений нагрузки у простой одновальной ГТУ открытого типа (кривая 1). Происходит это потому, что мощность в установке данного типа регулируется только изменением расхода топлива. Воли нагрузка уменьшается, уменьшают расход топлива, а при этом расход воздуха остается постоянная, поскольку компрессор, газовая турбина и нагрузка жестко связаны одним валом. Уменьшение расхода топлива, таким образом, ведет к уменьшению Т1, что уменьшает к.п.д. ГТУ. Значительно в меньшей степени к.п.д. снижается у двухвальной установки открытого типа (кривая 2).
Рис. 1.7. Изменение относительного к.п.д. ГТУ в зависимости от нагрузки:
1-простая одновальная ГТУ открытого цикла; 2-двухвальная ГТУ открытого цикла; 3-замкнутая ГТУ
Отсюда вывод„ что всегда, когда по условиям эксплуатации большую часть времени приходится работать на частичных нагрузках, целесообразно применять многовальные ГТУ.
Дадим объяснение этому явлению. Рассмотрим для примера наиболее простую двухвальную установку с независимой силовой турбиной (рис. 1.8). В такой установке турбина разделена на 2 части.
Одна часть, обычно высокого давления 2, служит приводом компрессора 1 и может работать с переменным числом оборотов. Вторая часть, силовая турбина 3, работает со строго постоянным числом оборотов, если она предназначена для привода электрогенератора, и может иметь практически любую скорость вращения, если она предназначена для привода нагнетателя. Регулирование в ГТУ этого типа осуществляется не только путем изменения расхода топлива, но и за счет изменения расхода воздуха, подаваемого компрессором 1.
Такой метод позволяет значительно меньше снижать или вообще не снижать температуру Т1 при работе на частичных нагрузках и тем самым поддерживать к.п.д. цикла на более высоком уровне.
Рис. 1.8. Схема простой двухвальной ГТУ открытого цикла:
1-компрессор; 2-ТВД; 3-ТНД (силовая); 4-нагрузка; 5-камера сгорания
Дата добавления: 2020-12-11; просмотров: 508;