Вынужденные колебания. Резонанс
Вынужденными колебаниями называются колебания, возникающие в системе при участии внешней силы, изменяющейся по периодическому закону.
Предположим, что на материальную точку, кроме квазиупругой силы и силы трения, действует внешняя вынуждающая сила
где Fo — амплитуда, со — круговая частота колебаний вынуждающей силы. Составим дифференциальное уравнение (второй закон Ньютона):
или
Решение дифференциального уравнения (5.41) является суммой двух слагаемых. Одно из них, соответствующее уравнению затухающих колебаний (5.20), играет роль только при установлении колебаний (см. рис. 5.6). Со временем им можно пренебречь. Другое слагаемое описывает смещение материальной точки в установившихся вынужденных колебаниях:
Как видно из (5.42), установившееся вынужденное колебание, происходящее под воздействием гармонически изменяющейся вынуждающей силы, тоже является гармоническим. Частота вынужденного колебания равна частоте вынуждающей силы. Вынужденные колебания, график которых представлен на рис. 5.17, сдвинуты по фазе относительно вынуждающей силы.
Амплитуда вынужденного колебания (5.43) прямо пропорциональна амплитуде вынуждающей силы и имеет сложную зависимость от коэффициента затухания среды и круговых частот собственного и вынужденного колебаний.
Заданы, то амплитуда вынужденных колебаний имеет максимальное значение при некоторой определенной частоте вынуждающей силы, называемой резонансной. Само явление — достижение максимальной амплитуды вынужденных колебаний для заданных ωо φ — называют резонансом.
Подставив (5.45) в (5.43), находим амплитуду при резонансе: |
Резонансную круговую частоту можно найти из условия минимума знаменателя в (5.43):
Из (5.46) видно, что при отсутствии сопротивления (β = 0) амплитуда вынужденных колебаний при резонансе неограниченно возрастает. При этом из (5.45) следует, что φрез = ω0, т. е. резонанс в системе без затухания наступает тогда, когда частота вынуждающей силы совпадает с частотой собственных колебаний. Графическая зависимость амплитуды вынужденных колебаний от круговой частоты вынуждающей силы при разных значениях коэффициента затухания показана на рис. 5.18.
Механический резонанс может быть как полезным, так и вредным явлением. Вредное действие резонанса связано главным образом с разрушением, которое он может вызвать. Так, в технике, учитывая разные вибрации, необходимо предусматривать возможное возникновение резонансных условий, в противном случае могут быть разрушения и катастрофы. Тела обычно имеют несколько собственных частот колебаний и соответственно несколько резонансных частот.
Если бы коэффициент затухания внутренних органов человека бы невелик, то резонансные явления, возникшие в этих органах под воздействием внешних вибраций или звуковых волн, могли бы привести к трагическим последствиям: разрыву органов, повреждению связок и т. п. Однако такие явления при умеренных внешних воздействиях практически не наблюдаются, так как коэффициент затухания биологических систем достаточно велик. Тем не менее резонансные явления при действии внешних механических колебаний происходят во внутренних органах. В этом, видимо, одна из причин отрицательного воздействия инфразвуковых колебаний и вибраций на организм человека (см. § 6.7 и 6.8).
Автоколебания
Как было показано в § 5.5, незатухающие колебания могут поддерживаться в системе даже при наличии сил сопротивления, если на систему периодически оказывается внешнее воздействие (вынужденные колебания). Это внешнее воздействие не зависит от самой колеблющейся системы, в то время как амплитуда и частота вынужденных колебаний зависят от этого внешнего воздействия.
Однако существуют и такие колебательные системы, которые сами регулируют периодическое восполнение растраченной энергии и поэтому могут колебаться длительное время.
Незатухающие колебания, существующие в какой-либо системе с затуханием при отсутствии переменного внешнего воздействия, называются автоколебаниями, а сами системы — автоколебательными.
Амплитуда и частота автоколебаний зависят от свойств самой автоколебательной системы, в отличие от вынужденных колебаний они не определяются внешними воздействиями.
Во многих случаях автоколебательные системы можно представить тремя основными элементами: 1) собственно колебательная система; 2) источник энергии; 3) регулятор поступления энергии в собственно колебательную систему. Колебательная система каналом обратной связи (рис. 5.19) воздействует на регулятор, информируя регулятор о состоянии этой системы.
Классическим примером механической автоколебательной системы являются часы, в которых маятник или баланс являются колебательной системой, пружина или поднятая гиря — источником энергии, а анкер — регулятором поступления энергии от источника в колебательную систему.
Многие биологические системы (сердце, легкие и др.) являются автоколебательными. Характерный пример электромагнитной автоколебательной системы — генераторы электромагнитных колебаний (см. гл. 18).
Дата добавления: 2020-11-18; просмотров: 383;