Характеристики електричного струму
Електричним струмом називають впорядкований (напрямлений) рух електричних зарядів.
Електричний струм має властивість теплової, хімічної і магнітної дії, причому магнітна дія струму проявляється в усіх без винятку провідниках, теплова дія відсутня у надпровідниках, хімічна дія проявляється переважно в електролітах. Кількісно електричний струм характеризується силою струму та густиною електричного струму.
Сила струму І визначається відношенням кількості заряду , який переноситься через переріз провідника, до проміжку часу , за який цей заряд переноситься:
(2.27)
Якщо за будь-які однакові проміжки часу переносяться однакові кількості електричного заряду, такий струм називається постійним. Тоді
(2.28)
Одиниця сили струму (Ампер) в системі СІ є основною одиницею, тобто Тоді з формули (2.28) можна ви-
значити одиницю кількісті електрики (Кулон): це такий заряд, що проходить за 1 с через провідник при силі струму 1 Ампер:
Густина струму - величина, яка дорівнює відношенню сили струму до площі поперечного перерізу провідника dS, через яку цей струм проходить:
(2.29)
У випадку постійного струму
(2.30)
Розмірність густини струму Густина струму - векторна величина; вона має напрямок середньої швидкості V впорядкованого руху позитивних носіїв струму
(2.31)
де п - концентрація вільних носіїв, - заряд одного вільного носія, - елементарний електричний заряд, - ціле число (у випадку електролітів - валентність іона).
Закон Ома.У більшості випадків за сталої температури відношення напруги на кінцях провідника U до величини струму І в ньому є величина стала, тобто
(2.32)
Величину R називають опором провідника. Формула (2.32) виражає закон Ома в інтегральній формі, який був встановлений Г. Омом у 1827 р. Опір однорідного провідника з незмінним перерізом прямопропорційний його довжині / і обернено пропорційний площі поперечного перерізу S, тобто
(2.33)
де - питомий опір. Величину обернену до питомого опору, називають питомою електропровідністю :
Підставивши (2.30), (2.33) в (2.32) і врахувавши (2.11), отримаємо
Оскільки напрямки векторів j та Е збігаються, можна записати:
(2.34)
Рівняння (2.34) виражає закон Ома в диференційній формі: густина струму пропорційна напруженості електричного поля і має однаковий з нею напрям. Закон Ома в такому вигляді встановлює зв'язок між величинами, які відносяться до даної точки провідника (локально), тому він застосовний і до неоднорідних провідників.
2.2.2. Електропровідність біологічних тканин ірідин
Багато біологічних середовищ (кров, спинномозкова рідина та інші) є електролітами. Як відомо, носії струму в електролітах - це позитивні і негативні іони, які виникають у результаті електролітичної дисоціації. Якщо густину струму для позитивних і негативних іонів згідно з (2.31) визначити як:
то загальна густина струму
де - відповідно концентрації та швидкості позитивних і негативних іонів.
Припустимо, що кожна нейтральна молекула дисоціює на два іони. Тоді концентрації позитивних та негативних іонів будуть однаковими п+ = п_ - а п, де а - коефіцієнт електролітичної дисоціації, п - число нейтральних молекул розчиненої речовини в одиниці об'єму. Звідси маємо:
(2.35)
Швидкість впорядкованого руху іонів прямо пропорційна до напруженості поля
(2.36)
Коефіцієнт пропорційності b називається рухливістю носіїв. Рухливість b чисельно дорівнює швидкості впорядкованого руху в полі з напруженістю :
Величина рухливості залежить від заряду носія його маси т, а також від часу вільного пробігу Значення рухливості для деяких іонів подані в табл. 2.3.
Таблиця 2.3.
Для іонів різного знака тоді для густини струму отримаємо
(2.37)
Порівнявши (2.37) з (2.34), бачимо, що питома електропровідність для електролітів:
(2.38)
Видно, що провідність зростає відповідно до зростання коефіцієнта дисоціації, концентрації молекул електроліту, заряду носіїв, рухливості іонів Із зростанням температури питомий опір електролітів зменшується. Це відбувається, по-перше, завдяки збільшенню коефіцієнта дисоціації з ростом температури; по-друге, завдяки зменшенню в'язкості рідин, в результаті чого збільшується рухливість іонів.
Визначення електропровідності біологічних тканин -непросте завдання. При цьому доводиться враховувати цілий ряд специфічних особливостей. Основу характерних лише для живих об'єктів властивостей (збудливість, скорочуваність) становлять ефекти, що мають електричну природу. Тому, опір живих клітин і тканин чутливий до дії електричного струму, особливо чутливі легко збудливі тканини: нерви і м'язи, а це означає, що при вимірюваннях потрібно використовувати досить низькі напруги. Електропровідність окремих ділянок залежить від опору шкіри і підшкірного шару в місцях накладання електродів. Опір шкіри, в свою чергу, визначається віком, товщиною, пітливістю тощо. Біологічні тканини мають досить неоднорідну електропровідність. В них складним чином чергуються ділянки з високою провідністю (біологічні рідини) і низькою (шкіра, кісткова і жирова тканини, мембрани клітин та клітинних органоїдів). Значення опору окремих тканин і рідин постійному струмові наведені в табл. 2.4.
Вимірювання електропровідності (кондуктометрія) широко використовується при вивченні процесів, які відбуваються в живих клітинах і тканинах під час зміни фізіологічного стану в результаті дії деяких хімічних речовин, а також за умови патологічних процесів. За динамікою зміни електричного опору шкіри судять про так звані шкірно-гальванічні реакції, в яких відображаються емоції, втома та інші стани організму. В області рефлексотерапії вимірюють електричний опір для знаходження "активних точок". З року в рік арсенал досліджень електричних властивостей біологічних тканин невпинно зростає.
Таблиця 2.4.
Особливо цікавою і складною задачею є дослідження електричних властивостей клітини. Не так давно вдалося виміряти електричний опір плазматичних мембран різних клітин. Будемо позначати опір одиниці мембранної поверхні незалежно від її товщини /, яку інколи неможливо виміряти точно (наприклад, при визначені трансмембранного опору), тобто - електроємність одиниці мембранної площі. Значення для різних біооб'єктів наведені в табл. 2.5.
Таблиця 2.5.
Від величин та суттєво залежать основні фізіологічні властивості клітинних структур, наприклад, швидкість поширення збудження, проникність мембрани тощо.
2.2.3. Дія електричного струму на живий організм
Первинна дія постійного струму на організм пов'язана в основному з двома процесами: поляризацією - виникненням дипольного моменту в тканинах та рухом заряджених частинок - їх появою і зміною концентрації, які призводять до порушення нормального для клітини розподілу зарядів і, як наслідок, її функцій.
Небезпеку для організму становить не саме електричне поле (напруга чи напруженість), а електричний струм, що протікає, особливо постійний. Найкращою провідністю характеризуються нервові волокна; тому навіть слабкий струм є своєрідним ударом для нервової системи. Із зменшенням опору R (при збільшенні вологості, наприклад) сила струму / навіть за малих напруг може різко зростати. Особливо небезпечно, коли струм проходить через життєво важливі органи - серце, мозок. Із збільшенням частоти струму його шкідлива дія зменшується. Деякі ефекти, що мають місце при дії електричного струму побутової частоти (50 Гц) на людський організм, містяться в табл. 2.6. Приведені порогові значення сили струму певною мірою умовні, їх величини залежать від місця й площі контакту, вологості та інших чинників.
Таблиця 2.6.
Постійний струм з напругою використовується з лікувальною метою в гальванізації. При цьому густина струму не повинна перевищувати Електрофорез - ще одна лікувальна методика, яка базується на пропусканні постійного струму. Електрофорез використовується для введення лікарських речовин через шкіру або слизові оболонки під дією електричного поля. Оскільки рухливість - величина, характерна для даного типу іонів, то за її значенням можна встановити вид іонів, або, якщо є суміш іонів, розділити їх в електричному полі. Цю особливість використовують для аналізу сироватки крові, шлункового соку електрофоретичним методом. Фракції білків (альбуміни, α-,β- γ-, - глобуліни) мають різні значення рухливості, тому їх можна розділити електричним полем, а потім і визначити їхні концентрації.
Сильні електричні імпульси використовуються для подразнення серця після його зупинки. Для цього на декілька мілісекунд через серце пропускають струм силою біля 10 А. Цей струм викликає рівномірну поляризацію (в дійсності деполяризацію) серцевої мембрани і дає можливість потенціалу дії скоординувати скорочення серцевих м'язів. Пристрій, який для цього використовується, називається дефібрилятор.
Подразнювальна дія слабких струмів низької частоти використовується під час фізіологічних досліджень, а також з лікувальною метою - відновлення провідності нервових волокон, скорочувальної здатності м'язів (електростимуляція, кардіостимуляція), відновлення кісткової тканини при переломах.
Мал. 2.14.
Важливе значення в цьому випадку має не тільки амплітуда й частота, а також і форма імпульсу, конфігурація його переднього та заднього фронтів. Вдалий підбір цих параметрів дозволяє отримати електричні імпульси, які адекватні до певних фізіологічних подразників. При визначенні конфігурації імпульсу користуються законом Дюбуа-Реймопа, згідно з яким подразнення прямо пропорційне до швидкості зміни сили струму . Імпульси прямокутної форми (мал. 2.14а) застосовуються, наприклад, при лікуванні електросном, для кардіостимуляції; при електрогімнастиці використовують імпульси трикутної та експоненційної форми (мал. 2.14б, в).
Дію на біологічні тканини імпульсними струмами (частоти подразнення) використовують і з діагностичною метою, зокрема для оцінки збудливості і функціональної рухливості (лабільності) м'язів. Лабільність визначається через частоту слідування при якій реакція м'яза оптимальна.
Пропускання електричного струму через біологічні тканини супроводжується нагріванням. Кількість теплоти, яка при цьому виділяється, може бути знайдена за законом Джоуля-Ленца
(2.39)
Обчислимо теплову потужність яка виділяється в одиниці об'єму: Скориставшись (2.30), (2.33) і врахувавши, що матимемо:
(2.40)
Остання рівність з урахуванням закону Ома в диференційній формі (2.34) може бути записана
(2.41)
Формули (2.40) і (2.41) виражають закон Джоуля-Ленца в диференційній формі.
Для прогрівання живих тканин непридатні через небезпеку ні постійні, ні низькочастотні струми, оскільки суттєвий тепловий ефект може бути досягнутий лише при використанні струмів значної сили. При дії струмом частотою зміщення іонів має величину такого ж порядку, як і їх зміщення внаслідок теплового руху, тому струми чи електромагнітні хвилі такої та більшої частоти не мають руйнівного чи подразнюючого впливу і можуть використовуватись з метою лікувального прогрівання.
МАГНІТНЕ ПОЛЕ
2.3.1. Магнітне поле у вакуумі і його характеристики
Джерелом макроскопічного магнітного поля є намагнічені тіла, провідники зі струмом і рухомі електричні заряди. Природа цих джерел єдина: магнітне поле виникає в результаті руху заряджених мікрочастинок (електронів, протонів, іонів). Магнітне поле виявляють по дії на рухомі електричні заряди (провідник чи рамка зі струмом) або постійні магніти (магнітна стрілка).
Мал. 2.15.
Магнітне поле характеризується вектором магнітної індукції В. Магнітна індукція у деякій точці поля дорівнює відношенню максимального обертального моменту, який діє на пробну (нескінченно малих розмірів) рамку зі струмом у даній точці до магнітного моменту рамки:
(2.42)
Дослід показує, що на пробну рамку зі струмом І діє обертальний момент, величина якого залежить від орієнтаціїводити з такою густиною, щоб кількість ліній, які перетинають одиничну перпендикулярну до В площадку, чисельно дорівнювала б значенню індукції магнітного поля в місці розміщення площадки. Лінії магнітної індукції замкнені. Подібні поля називають вихровими.
Потоком вектора магнітної індукції (магнітний потік) dФ через елементарну площадку dS незамкненої поверхні S називають величину
(2.44)
де - кут між нормаллю до площадки та вектором Б. За одиницю магнітного потоку в системі СІ приймається 1 Вебер (Вб) - магнітний потік, що створюється магнітним полем з індукцією 1 7л, яке пронизує плоску поверхню площею , розташовану перпендикулярно до вектора В.
Дата добавления: 2020-11-18; просмотров: 602;