Контрольные задания
6.1.Определить количество теплоты, теряемой 50 см2 поверхности расплавленной платины за 1 мин, если поглощательная способность платины 0,8. Температура плавления платины равна 1770оС.
6.2.Энергетическая светимость чёрного тела равна 10 кВт/м2. Определите длину волны, соответствующую максимуму спектральной плотности энергетической светимости этого тела.
6.3.Чёрное тело находится при температуре 3000 К. При остывании тела длина волны, соответствующая максимуму энергетической светимости, изменилась на 8 мкм. Определите температуру, до которой тело охладилось.
6.4.Чёрное тело нагрели от температуры 600 К до 2400 К. Определите: 1) во сколько раз увеличилась его энергетическая светимость; 2) на сколько уменьшилась длина волны, соответствующая максимуму спектральной плотности энергетической светимости.
6.5.В результате нагревания чёрного тела длина волны, соответствующая максимуму спектральной плотности энергетической светимости, сместилась с 2,7 мкм до 0,9 мкм. Определите, во сколько раз увеличилась: 1) энергетическая светимость тела; 2) максимальная спектральная плотность энергетической светимости тела.
6.6. Металлическая поверхность площадью 15 см2, нагретая до температуры 3000 К, излучает в одну минуту 100 кДж. Определите: 1) энергию, излучаемую этой поверхностью, считая её чёрной; 2) отношение энергетических светимостей этой поверхности и чёрного тела при данной температуре.
6.7.Мощность излучения чёрного тела равна 34 кВт. Найти температуру этого тела, его поверхность равна 0,6 м2.
6.8.Температура вольфрамовой спирали в 25-ваттной электрической лампочке равна 2450 К. Отношение её излучения к излучению чёрного тела при данной температуре равно 0,3. Найти величину излучающей поверхности спирали.
6.9.Мощность излучения чёрного тела равна 105 кВт. Найти величину излучающей поверхности тела, если известно, что длина волны, на которую приходится максимум спектральной плотности энергетической светимости, равна 700 нм.
6.10.Найти, какое количество энергии с одного квадратного сантиметра поверхности в одну секунду излучает чёрное тело, если известно, что длина волны, на которую приходится максимум спектральной плотности энергетической светимости приходится на длину волны 4840 Å.
6.11.Фотоэффект для некоторого металла начинается при частоте падающего света 6·1014 Гц. Задерживающее напряжение равно 3 В. Определите: 1) работу выхода электронов из этого металла; 2) частоту применяемого излучения.
6.12.Фотоны с энергией 5 эВ вырывают фотоэлектроны из металла с работой выхода 4,7 эВ. Определите максимальный импульс, предаваемый поверхности этого металла при вылете электрона.
6.13. Задерживающее напряжение для платиновой пластины (работа выхода 6,3 эВ) составляет 3,7 В. При тех же условиях для другой пластины задерживающее напряжение равно 5,3 В. Определите работу выхода электронов из этой пластины.
6.14.Длина волны падающего света 400 нм, задерживающее напряжение равно 1,2 В. Определите «красную границу» фотоэффекта.
6.15.«Красная граница» фотоэффекта для некоторого металла равна 500 нм. Определите: 1) работу выхода электронов из этого металла; 2) максимальную скорость электронов, вырываемых из этого металла светом с длиной волны 400 нм.
6.16. Калий освещается монохроматическим светом с длиной волны 400 нм. Определите наименьшее задерживающее напряжение, при котором фототок прекратится. Работа выхода электронов из калия равна 2,2 эВ.
6.17.«Красная граница» фотоэффекта для некоторого металла равна 500 нм. Определите минимальное значение энергии фотона, вызывающего фотоэффект.
6.18.Определите максимальную скорость фотоэлектронов, вырываемых с поверхности металла, если фототок прекращается при задерживающем напряжении 3,7 В.
6.19.Определите работу выхода электронов из натрия, если «красная граница» фотоэффекта равна 5000 Å.
6.20.Красная граница фотоэффекта для цезия 6530 Å. Определите скорость фотоэлектронов при облучении цезия светом длиной волны 4000Å.
6.21.Давление света с длиной волны 500 нм на зачернённую поверхность, расположенную перпендикулярно падающим лучам, равно 0,12 мкПа. Определите число фотонов, падающих ежесекундно на 1 м2 поверхности.
6.22.На идеально отражающую поверхность площадью 5 см2 за время 3 мин нормально падает монохроматический свет, энергия которого 9 Дж. Определите световое давление, оказываемое на поверхность.
6.23.Определите давление света на стенки электрической 150-ваттной лампочки, принимая, что вся потребляемая мощность идёт на излучение и стенки лампочки отражают 15% падающего на них света. Считать лампочку сферическим сосудом радиуса 4 см.
6.24.Давление света с длиной волны 500 нм на зачернённую поверхность, расположенную перпендикулярно падающему излучению, равно 0,15 мкПа. Определите число фотонов, падающих на поверхность площадью 10 см2 за 1 с.
6.25.Пучок света с длиной волны 4900 Å, падая нормально на поверхность, производит давление 5·10-6 Па. Сколько квантов света падает ежесекундно на единицу площади этой поверхности? Коэффициент отражения света равен 0,25.
6.26.Рентгеновские лучи с длиной волны 0,708 Å испытывают комптоновское рассеяние на парафине. Найдите длину волны рентгеновских лучей, рассеянных в направлении: 1) ; 2) .
6.27. Какова длина волны рентгеновского излучения, если при комптоновском рассеянии этого излучения графитом под углом 60º длина волны рассеянного излучения оказалась равной 2,54·10-7 .
6.28.Рентгеновские лучи с длиной волны 0,2 Å испытывают комптоновское рассеяние под углом 90º. Определите изменение длины волны рентгеновских лучей при рассеянии.
6.29.В явлении Комптона энергия падающего фотона распределяяется поровну между рассеянным фотоном и электроном отдачи. Угол рассеяния равен 90º. Определите энергию и импульс рассеянного фотона.
6.30.Энергия рентгеновских лучей равна 0,6 МэВ. Определите энергию электрона отдачи, если известно, что длина волны рентгеновских лучей после комптоновского рассеяния изменилась на 20%.
Дата добавления: 2020-10-25; просмотров: 530;