Кольцо матриц. Эквивалентность матриц.
Рассмотрим кольцо матриц порядка n с элементами из кольца K. Будем считать, что кольцо K с единицей. Элемент называется обратимым, если найдется , что (т.е. для него существует обратный элемент).
Матрица называется унимодулярной, если для нее существует обратная с элементами из кольца K (т.е. матрица A является обратимым элементом кольца матриц).
Теорема 6.1. Матрица является унимодулярной тогда и только тогда, когда ее определитель есть обратимый элемент кольца .
Доказательство. Не сложное.
Свойство 6.1. Произведение унимодулярных матриц – унимодулярная матрица.
Доказательство. Следует из того, что произведение обратимых элементов – обратимый элемент .
Свойство 6.2. Следующие преобразования со строками равносильны умножению слева на унимодулярную матрицу:
1. перестановка строк
2. умножение строки на обратимый элемент кольца
3. прибавление к строке строки , умноженной на элемент кольца .
Аналогичные преобразования со столбцами равносильны умножению справа на унимодулярную матрицу.
Доказательство. Выписать матрицу элементарного преобразования и показать ее унимодулярность.
Матрицы и называются эквивалентными, если найдутся унимодулярные матрицы и , что A=UBV.
Пусть K – евклидово кольцо (т.е. в нем определена операция деления с остатком).
Матрица , где при называется нормальной диагональной формой Смита.
Теорема 6.2. Для любой матрицы существует эквивалентная ей нормальная диагональная форма Смита.
Доказательство. Достаточно привести матрицу с помощью элементарных преобразований (Свойство 6.2) к нормальной диагональной форме Смита.
Обозначим через - наибольший общий делитель миноров k-го порядка матрицы A.
Лемма 6.1. Пусть , тогда .
Доказательство. Строки матрицы A являются линейными комбинациями строк матрицы B. Следовательно, по свойствам определителя (его линейности), любой минор k-го порядка матрицы A является линейной комбинацией миноров k-го порядка матрицы B, и, значит, .
Следствие 6.1. Пусть , где - унимодулярная матрица. Тогда .
Доказательство. Следует из равенств , и Лемма 6.1.
Следствие 6.2. Пусть , где и - унимодулярные матрицы. Тогда .
Доказательство. По Следствие 6.1 . Далее и (Следствие 6.1), следствие доказано.
Теорема 6.3. Нормальная диагональная форма единственна.
Доказательство. Пусть A эквивалентна нормально диагональной форме Смита S. Тогда , где . Следовательно, , , …, . Все элементы нормальной диагональной формы Смита определены однозначно.
Дата добавления: 2016-07-27; просмотров: 2885;