Первый закон термодинамики.


Первый закон термодинамики является основой термодинамической теории и имеет огромное прикладное значение при исследовании термодинамических процессов. Этот закон является законом сохранения и превращения энергии:
¦"Энергия не исчезает и не возникает вновь, она лишь переходит
¦из одного вида в другой в различных физических процессах".
Для термодинамических процессов закон устанавливает взаимосвязь между теплотой, работой и изменением внутренней энергии т/д системы:
¦"Теплота, подведенная к системе, расходуется на изменение энергии ¦системы и совершение работы".
Уравнение первого закона термодинамики имеет следующий вид:

Q = (U2 – U1) + L , (2.1)

где Q - количества теплоты подведенная (отведенная) к системе;
L - работа, совершенная системой (над системой);
(U2 – U1) - изменение внутренней энергии в данном процессе.
Если:
Q > 0 – теплота подводится к системе;
Q < 0 – теплота отводится от системы;
L > 0 –работа совершается системой;
L < 0 – работа совершается над системой.
Для единицы массы вещества уравнение первого закона термодинамики имеет вид:

q = Q /m = (u2 – u1) + l . (2.2)

В дальнейшем все формулы и уравнения будут даны в основном для единицы массы вещества.

1-й закон т/д указывает, что для получения полезной работы (L) в непрерывно действующем тепловом двигателе надо подводить (затрачивать) теплоту (Q).
¦"Двигатель, постоянно производящий работу и не потребляющий ¦никакой энергии называется вечным двигателем I рода."
Из этого можно высказать следующее определение 1-го закона термодинамики:
¦" Вечный двигатель первого рода невозможен".

Теплоемкость газа.

Истинная теплоемкость рабочего тела определяется отношением количества подведенной (отведенной) к рабочему телу теплоты в данном т/д процессе к вызванному этим изменениям температуры тела.

С = dQ / dT , [Дж /К] ; (2.3)

Теплоемкость зависит от внешних условий или характера процесса, при котором происходит подвод или отвод теплоты.
Различают следующие удельные теплоемкости:

массовую – с = С / m , [Дж/кг] ; (2.4)
молярную - сμ = С / ν , [Дж/моль] , (2.5)


где ν - количества вещества [моль] ;
объемную - с/ = С / V = с·ρ , [Дж/м3] , (2.6)

где - ρ = m / V - плотность вещества.
Связь между этими теплоемкостями:

с = с/ · υ = сμ / μ ,


где - υ = V/m - удельный объем вещества, [м3/кг];
μ = m /ν – молярная (молекулярная) масса, [кг/моль].
Теплоемкость газов в большой степени зависит от тех условий, при которых происходит процесс их нагревания или охлаждения. Различают теплоемкости при постоянном давлении (изобарный) и при постоянном объеме (изохорный).
Таким образом различают следующие удельные теплоемкости:
ср , сv – массовые изобарные и изохорные теплоемкости;
с , с – молярные изобарные и изохорные теплоемкости;
с/p , с/v – объемные изобарные и изохорные теплоемкости.
Между изобарными и изохорными теплоемкостями существует следующая зависимость:

ср - сv = R - уравнение Майера; (2.7)
с - с = Rμ . (2.8)

Теплоемкость зависит от температуры, которые даются в справочных литературах в виде таблицы как средние теплоемкости в интервале температур от 0 до tх. Для определения средней теплоемкости в интервале температур от t1 до t2 можно использовать следующую формулу:

с|t2t1 = (с|t20 t2 - с|t10 t1) / (t2 - t1) . (2.9)



Дата добавления: 2016-07-27; просмотров: 1588;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.