Классификация нагнетателей


 

Гидравлической машинойназывают устройство, преоб­разующее механическую работу в энергию потока жид­кости и наоборот. Гидравлическая машина, в которой в результате обмена энергией происходит преобразова­ние механической энергии жидкости в механическую работу (вращение вала, возвратно-поступательное дви­жение поршня и т. д.), называется турбинойили гидро­двигателем. Гидравлическая машина, в которой проис­ходит преобразование механической работы в механиче­скую энергию жидкости, называется нагнетателем. К на­гнетателям относятся насосы и воздуходувные машины. Воздуходувные машины служат для повышения давле­ния и подачи воздуха или другого газа. В зависимости от степени сжатия воздуходувные машины разделяют на вентиляторы и компрессоры,

Вентилятор-воздуходувная машина, предназначен­ная для подачи воздуха или другого газа под давлени­ем до 15 кПа при организации воздухообмена.

Компрессоромназывают воздуходувную машину, предназначенную для сжатия и подачи воздуха и како­го-либо газа под давлением не ниже 0,2 МПа.

Насос-устройство, служащее для напорного пере­мещения (всасывания, нагнетания) главным образом ка­пельной жидкости в результате сообщения ей энергии.

Основное назначение нагнетателя - повышение пол­ного давления перемещаемой среды. В зависимости от свойств среды (газ, чистая жидкость, загрязненная жид­кость и взвесь, вязкая жидкость, агрессивная жидкость, жидкий металл, сжиженный газ и т. п.) применяются нагнетатели различных типов и конструкций. В практи­ке довольно часто встречаются нагнетатели разных ти­пов, названия которым даны в зависимости от их на­значения и особенностей эксплуатации (например, пи­тательные, циркуляционные, конденсатные насосы для тепловых электростанций и т. п.). Нагнетатели в основ­ном классифицируют по принципу действия и конструк­ции. В этом смысле их подразделяют на объемные и ди­намические.

Объемные нагнетателиработают по принципу вытес­нения, когда давление перемещаемой среды повышается в результате сжатия. К ним относятся возвратно-посту­пательные (диафрагменные, поршневые) и роторные (ак­сиально- и радиально-поршневые, шиберные, зубчатые, винтовые и т. п.) насосы.

Динамические нагнетателиработают по принципу си­лового воздействия на перемещаемую среду. К ним от­носятся лопастные (радиальные, центробежные, осевые) нагнетатели и нагнетатели трения (вихревые, дисковые, струйные и т. п.).

Нагнетатели, используемые в системах теплогазоснабжения и вентиляции, должны удовлетворять сле­дующие основные требования: 1) соответствие фактических параметров работы (р, L, и N) заданным расчетным условиям; 2) возможность регулирования подачи и давления в определенных пределах; 3) устойчивость и надежность в работе; 4) простота монтажа; 5) бесшумность при работе.

Рассмотрим схемы и принципы действия нагнетате­лей разного типа.

 
 

Рис. 7. Схема радиального вентилятора: 1 – коллектор; 2 – рабочее колесо; 3 – спиральный кожух; 4 – лопатка  

В радиальном вентиляторе со спиральным кожухом (рис. 7) перемещаемая среда, двигаясь в осевом на­правлении через всасывающий коллектор, попадает на вращающееся рабочее колесо, снабженное лопатками, изменяет направление своего движения к периферии ко­леса, закручивается в направлении вращения, поступа­ет в спиральный кожух и затем через отверстие выхо­дит из нагнетателя. Рабочее колесо сидит на валу и при­водится во вращение приводом. Вал вращается в под­шипниках, укрепленных на станине или непосредствен­но на кожухе.

Рис. 8. Схема центробежного насоса: 1 - входной патрубок; 2 - рабочее колесо; 3 - корпус; 4 - нагнетательный патрубок; 5 - лопатка

Аналогичную конструкцию и принцип действия име­ет центробежный насос, изображенный на рис. 8.

К достоинствам таких вентиляторов следует отнести возможность использования для привода высокоскорост­ных электродвигателей, высокий КПД (более 80 %), простоту изготовления, высокую равномерность подачи и относительную простоту ее регулирования. Недостат­ком является то, что подача зависит от сопротивления сети.

В осевом вентиляторе(рис. 9) поток движется пре­имущественно в направлении оси вращения и некото­рое закручивание приобретает лишь при выходе из ко­леса. Поток через коллектор поступает во входной на­правляющий аппарат, затем в рабочее колесо и в вы­ходной направляющий аппарат. Колесо сидит на валу, вращающемся в подшипниках, укрепленных на стойках.

 
 

Рис. 9. Схема осевого вентилятора: 1 - коллектор; 2 - входной направляющий аппарат; 3 - рабочее колесо; 4 - выходной направляющий аппарат; 5 - кожух (обечайка); 6 - обтекатель

Колесо и направляющие аппараты заключены в ко­жух (обечайку). Втулка рабочего колеса имеет обте­катель.

Как в осевом, так и в радиальном вентиляторе пере­дача энергии от двигателя потоку среды происходит во вращающемся рабочем колесе.

Аналогичную конструкцию и принцип действия име­ет осевой насос.

Осевые нагнетатели просты в изготовлении, ком­пактны, реверсивны; по сравнению с радиальными на­гнетателями они имеют более высокие КПД и подачу при относительно низком давлении (напоре).

В прямоточном радиальном вентиляторе(рис. 10) перемещаемая среда вначале также движется в осевом направлении и поступает во вращающееся рабочее ко­лесо, где под действием центробежной силы проходит в радиальном направлении в межлопа-

 

 
 

Рис. 10. Схема прямоточного вентилятора: 1 - корпус; 2 - рабочее колесо; 3 - диффузор

точном простран­стве и выходит в осевом направлении по кольцу через радиальный лопастной диффузор, стенки которого име­ют криволинейную форму, а лопатки установлены на осесимметричном коленообразном участке диффузора. В диффузоре часть динамического давления преобра­зуется в статическое. КПД вентилятора достигает 70 %. Одним из преимуществ вентиляторов такого типа яв­ляется возможность размещения электродвигателя внутри кожуха, что приводит к улучшению шумовых характеристик установки. Изготовление таких вентиля­торов несколько сложнее, чем обычных.

Смерчевой вентилятор(рис. 11) имеет рабочее коле­со с небольшим числом лопаток, прикрепленных к зад­нему диску. Это колесо размещено в специальной нише в задней стенке спирального кожуха. При вращении ко­леса возни-

 
 

Рис. 11. Схема смерчевого вентилятора: 1 - кожух; 2 - лопатка; 3 - задний диск  

кает вихревое течение, аналогичное атмосфер­ному вихрю - смерчу, в центральной и периферийной частях которого образуется перепад давлений, являю­щийся побудителем движения воздуха. Вследствие это­го основная часть потока с содержащимися в нем при­месями проходит через нагнетатель, минуя рабочее ко­лесо. КПД вентилятора не превышает 60 %.

Дисковый вентилятор(рис. 12) относится к нагне­тателям трения. Рабочее колесо у такого нагнетателя представляет собой пакет дисков (колец), расположен­ных с небольшим зазором перпендикулярно оси враще­ния колеса. Передача энергии от колеса потоку жидкости происходит в результате действия сил трения в по­граничном слое, образующемся на дисках. Отсутствие срывных вихревых зон, неизбежных в лопастном рабо­чем колесе, способствует устойчивой работе дисковых машин с малым шумом. КПД таких нагнетателей не превышает 40 – 45 %.

Вихревой насос(рис. 13) относится к машинам тре­ния. Его рабочее коле-

 
 

Рис. 12. Схема дискового вентилятора: 1 - корпус; 2 - рабочее колесо

со, аналогично колесу центробеж­ного насоса, засасывает жидкость из внутренней части канала и нагнетает ее во внешнюю, в результате чего возникает продольный вихрь. При прохождении жидко­сти через рабочее колесо в вихревом насосе, как и в центробежном, увеличиваются кинетическая энергия жидкости (увеличивается ее скорость) и потенциальная энергия давления.

Рабочим органом насоса является рабочее колесо с радиальными или наклонными лопатками. Колесо вра­щается в цилиндрическом корпусе с малыми торцовыми зазорами. Жидкость поступает через всасывающее отверстие в канал, перемещается по нему рабочим ко­лесом и выбрасывается через выходное отверстие.

 
 

Рис. 13. Схема вихревого насоса: 1 – рабочее колесо; 2 – лопатка; 3 – корпус; 4 – всасывающее отверстие; 5 – выходное отверстие  

Вихревой насос по сравнению с центробежным об­ладает следующими достоинствами: создаваемое им давление в 3-5 раз больше при одинаковых размерах и частоте вращения рабочего колеса; конструкция про­ще и дешевле; обладает самовсасывающей способностью; может работать на смеси жидкости и газа; по­дача меньше зависит от противодавления сети. Недо­статками насоса являются низкий КПД, не превышаю­щий в рабочем режиме 45 %, и непригодность для по­дачи жидкости, содержащей абразивные частицы (так как это приводит к быстрому изнашиванию стенок тор­цовых и радиальных зазоров и, следовательно, падению давления и КПД).

Диаметральный вентилятор (рис. 14) имеет следую­щий принцип действия. Если во вращающееся колесо барабанного типа поместить неподвижное тело, располо­женное несимметрично относительно оси колеса, то осесимметричный вихрь, образующийся вокруг колеса, сме­щается в сторону, и возникает течение воздуха через колесо в сторону меньшего сечения. Поперечное течение появляется также при установке лопаточного колеса в несимметричном коленообразном корпусе.

 
 

Рис. 14. Схема диаметрального вентилятора: 1 - рабочее колесо; 2 - корпус; 3 - неподвижное тело

Диаметральные вентиляторы имеют следующие преи­мущества по сравнению с радиальными: диаметральные вентиляторы с широкими колесами могут непосредствен­но присоединяться к воздуховодам, имеющим сечение в форме вытянутого прямоугольника; диаметральные вентиляторы могут создавать значительные давления даже при невысоких окружных скоростях рабочих ко­лес, поскольку поток воздуха дважды пересекает лопа­точное колесо.

Недостатки, мешающие более широкому применению диаметральных вентиляторов, состоят в следующем: невысокий КПД (максимальный 60–65%); повышен­ный уровень шума; возможность появления неустойчи­вых режимов работы в области, где с увеличением по­дачи наблюдается рост давления; существенные пере­грузки электродвигателя при уменьшении сопротивле­ния сети.

Поршневой нагнетатель (рис. 15) состоит из цилинд­рического корпуса, внутри которого перемещается пор­шень с кольцами, всасывающего и нагнета-

 
 

Рис. 15. Схема поршневого нагнетателя: 1 - корпус; 2 - поршень; 3 - вса­сывающий клапан; 4 - нагнета­тельный клапан

тельного кла­панов. Поршень в корпусе совершает возвратно-поступа­тельное движение. Преобразование вращательного дви­жения привода в возвратно-поступательное движение поршня осуществляется с помощью кривошипно-шатунного механизма. При движении поршня вправо откры­вается клапан 3, и жидкость заполняет пространство внутри корпуса. При этом клапан 4 закрыт. При дви­жении поршня влево клапан 3 закрыт, открывается кла­пан 4, и жидкость выталкивается в нагнетательный тру­бопровод.

Поршневые нагнетатели имеют следующие достоин­ства: высокий КПД (до 95 %); возможность получения высоких давлений; независимость подачи от противо­давления сети; возможность запуска в работу без пред­варительного залива (при использовании в качестве насосов). К недостаткам относятся громоздкость конструк­ции; невозможность использования для привода высо­коскоростных электродвигателей из-за сложности при­вода через кривошипно-шатунный механизм; сложность регулирования подачи.

 

 
 

Рис. 16. Схема зубчатого насоса: 1 - корпус; 2 - шестерня  

Зубчатый (шестеренный) насос(рис. 16) состоит из двух шестерен, расположенных в корпусе. Одна из шес­терен приводится в движение расположенным на одной оси электродвигателем, а вторая получает вращение от первой благодаря плотному зацеплению зубьев. При работе жидкость захватывается зубьями колес, отжи­мается к стенкам корпуса и перемещается со стороны всасывания на сторону нагнетания. Переток жидкости в обратном направлении практически отсутствует из-за плотного сцепления зубьев.

 


 

 

Рис. 17. Схема нагнетателя восьмерочного типа: 1 - корпус; 2 - рабочее колесо Рис. 18. Схема пластинчатого нагнетателя: 1 - корпус; 2 - ротор; 3 - пластины

 

Рис. 17. Схема нагнетателя восьмерочного типа: 1 - корпус; 2 - рабочее колесо Рис. 18. Схема пластинчатого нагнетателя: 1 - корпус; 2 - ротор; 3 - пластины

Число зубьев в пределе может быть уменьшено до двух, при этом вращающиеся элементы будут иметь очертания, напоминающие восьмерку (рис. 17). В та­ком нагнетателе необходимо обеспечить привод от дви­гателя обеих «восьмерок», так как в отличие от зуб­чатых насосов они не имеют зацепления.

К достоинствам нагнетателей данного вида следует отнести компактность, простоту конструкции, отсутствие клапанов, возможность использования для привода вы­сокоскоростных электродвигателей, независимость пода­чи от противодавления сети, реверсивность, возмож­ность получения высоких давлений (5 МПа для шестеренного насоса, 0,5 МПа для насоса «восьмерочного» типа). Основные недостатки состоят в быстром износе рабочих органов, невысокой подаче и сравнительно низ­ком КПД (до 0,75 %).

Пластинчатый нагнетатель (рис. 18), как и зубча­тый, относится к группе роторных машин. Он состоит из цилиндрического корпуса, в котором эксцентрично расположен массивный ротор с радиальными продоль­ными пазами, где свободно размещены пластины, вы­полненные из материала, хорошо сопротивляющегося истиранию. При вращении ротора пластины под дей­ствием центробежных сил выходят из пазов, прижи­маются к внутренней поверхности корпуса, захватывают на стороне всасывания жидкость и перемещают ее к на­гнетательному трубопроводу, т. е. пластины как бы вы­полняют роль поршня.

К достоинствам нагнетателя относятся высокая рав­номерность подачи, возможность непосредственного сое­динения с электродвигателем, отсутствие клапанов, ре­версивность, независимость подачи от противодавления сети. К недостаткам следует отнести повышенную чув­ствительность к качеству перемещаемой жидкости (на­личию в ней механических примесей), быстрый износ кромок пластин, довольно низкий КПД - 50 % (из-за перетекания жидкости через зазоры между кромками пластин и стенками корпуса).

В струйных нагнетателях смешение двух жидких или газообразных сред происходит под воздействием давле­ния, создаваемого другими нагнетателями (например, насосами или вентиляторами). Движение перемещаемой жидкости обеспечивается струей рабочей жидкости.

Рис. 19. Схема водоструй­ного нагнетателя: 1 - сопло; 2 - камера смеше­ния; 3 - диффузор   Рис. 20. Схема эжектора: 1 - сопло; 2 - камера смешения; 3 - диффузор

Известны две конструктивные схемы струйных аппа­ратов. В аппаратах, выполненных по первой схеме (рис. 19), подмешиваемый поток поступает под углом 90° к оси аппарата. Вследствие больших потерь на удар при смешивании потоков КПД этих аппаратов очень низок и не превышает 25 %. В аппаратах, выполненных по второй схеме (рис. 20), подмешиваемый поток под­водится вдоль оси аппарата. При этом, как доказал проф. П. Н. Каменев, их КПД может быть доведен до 43,5 %.

Любой струйный аппарат состоит из сопла, куда по­дается рабочая жидкость (вода, газ, пар), камеры сме­шения, где смешиваются рабочая и подсасываемая жид­кости, и диффузора, в котором осуществляется преобра­зование кинетической энергии в потенциальную, т. е. создается давление.

Работает струйный аппарат следующим образом. Ра­бочая жидкость выходит из сопла с большой скоростью в виде струи, несущей большой запас кинетической энер­гии. Активная рабочая струя захватывает окружающую жидкость и передает ей часть своей энергии. Образовав­шийся смешанный поток движется в проточной части аппарата. В камере смешения в результате обмена им­пульсами происходит выравнивание поля скоростей по­тока и за счет высвобождающейся кинетической энер­гии растет его статическое давление. Затем поток посту­пает в диффузор, где вследствие уменьшения скорости и, следовательно, динамического давления потока про­исходит увеличение статического давления.

К достоинствам струйных аппаратов следует отнести простоту конструкции и отсутствие подвижных элемен­тов; к недостаткам - очень низкий КПД.

 
 

Рис. 21. Схема газлифта (эр­лифта): 1 - обсадная труба; 2 - газовая труба; 3 - подъемная труба

В пневматических нагнетателях (подъемниках)для подъема жидкости используется сжатый воздух или технический газ. Идея подъема жидкости сжатым воздухом возникла в конце XVIII в., но только спустя столетие нашла практическое применение для подъема воды и нефти из скважин. Аппарат, в котором воплотилась эта идея, получил название газлифт (эрлифт). Теория газлифта, правильно объясняющая его действие увлече­нием жидкости всплывающими пузырьками воздуха, была разработана лишь в 1941 г. Н. М. Герсеванозым. Существуют три типа газлифтов (рис. 21): I - с двумя трубами: газовой и для подъема жидкости (жид­костной); II - с одной газовой и III - с одной жидкостной трубой, установленной в обсадной трубе и опущен­ной в скважину.

 
 

Рис. 22. Схема пневматиче­ского подъемника периодиче­ского действия

В газлифте I-го и II-го типов сжатый воз­дух (или газ) под давлением нагнетается в скважину по газовой трубе, а в газлифте III-го типа воздух нагне­тается в кольцевое пространство между обсадной и жидкостной трубами. В жидкостных трубах образует­ся смесь жидкости и воздуха (или газа) - эмульсия. Пузырьки воздуха (или газа) устремляются вверх, увлекая за собой жидкость. Достигнув верха труб, эмуль­сия изливается. Пузырьки воздуха (или газа) по мере движения вверх увеличиваются в объеме вследствие уменьшения в них давления, при этом возрастает ско­рость подъема эмульсии. При подъеме пузырьков часть жидкости не увлекается ими и падает вниз. Чем меньше скорость подъема эмульсии, тем больше утечка жидко­сти. Практикой установлены следующие оптимальные скорости движения эмульсии. При входе воздуха (или газа) v ³ 3м/с, при изливе v = 6¸8 м/с. При увеличе­нии скорости быстро возрастают потери давления, а при ее уменьшении увеличивается скольжение пузырьков воздуха (или газа), что приводит к увеличению потерь жидкости. На выходе эмульсии из газлифта сепаратором производится разделение газа и жидкости. Сепарато­ром для воды служит отражатель в виде зонта, уста­новленный в приемном баке. Эмульсия ударяется о внут­реннюю поверхность отражателя, воздух улетучивается, а вода стекает с отражателя в бак, откуда по трубам направляется в систему водоснабжения.

Для нормальной работы газлифта необходимо, что­бы высота слоя жидкости в скважине была больше вы­соты ее подъема (H - h > h), а также, чтобы уровень жидкости был постоянным (так называемый динамиче­ский уровень), а коэффициент погружения К=Н/h на­ходился в пределах 1,7...3,5. Встречающиеся на практи­ке газлифты имеют подачу 1...500 м3/ч с высотой подъе­ма воды 10...200 м.

 

Несмотря на малый КПД (15...36 %) подъем жид­кости с помощью газлифтов обладает следующими до­стоинствами: простота устройства, отсутствие в скважи­не механизмов, надежность и бесперебойность действия, невысокие требования к качеству жидкости.

К пневматическим подъемникам относится и пневма­тическое устройство периодического действия (рис. 22). Подъем воды из резервуара 1 в бак 2 на высоту Нгосуществляется с помощью компрессора 3 и пневматиче­ского баллона 4. При отключенном компрессоре и от­крытых задвижках а и б баллон заполняется водой. Закрыв задвижки а и б, открывают задвижку в и, включив компрессор, вытесняют воду в бак. Цикл подачи осуществляется периодически.

 



Дата добавления: 2019-02-08; просмотров: 1639;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.022 сек.