Векторами и комплексными числами


Синусоидальные ЭДС, напряжения и токи, имеющие частоту ω, можно изображать векторами на плоскости декартовых координат, вращающимися с угловой скоростью, равной ω, причем длина вектора определяется в соответствующем масштабе амплитудой ЭДС, напряжения или тока.

Пусть мы имеем две синусоидальные ЭДС:

и .

Изобразим их в виде векторов в момент времени равный нулю (рис. 2.2). Начальные фазы этих синусоидальных ЭДС откладываются от горизонтальной оси против часовой стрелки, если они положительны, и по часовой стрелке, если они отрицательны. Длины векторов равны соответствующим амплитудным значениям.

Найдем ЭДС е, равную сумме ЭДС е1 и е2. Тогда эта ЭДС е будет изображаться вращающимся вектором, равным геометрической сумме векторов, изображающих ЭДС е1 и е2.

В любой момент времени взаимное расположение этих вращающихся векторов будет оставаться неизменным, поэтому достаточно построить векторы в момент времени равный нулю, и все операции выполнять над ними.

Совокупность векторов, характеризующих процессы, происходящие в той или иной цепи синусоидального тока, и построенных с соблюдением правильной ориентации их друг относительно друга для момента времени равного нулю, называют векторной диаграммой.

Так как обычно мы интересуемся действующими значениями синусоидальных функций, которые в раз меньше их амплитуд, то целесообразно на векторной диаграмме длину векторов выбирать равной, в избранном масштабе, действующим значениям ЭДС, напряжений или токов. На рис. 2.3 изображена векторная диаграмма напряжения u и тока i, причем ток отстает от напряжения на угол φ, который на векторной диаграмме всегда показывается стрелкой, направленной от вектора тока к вектору напряжения.

Синусоидальную функцию можно изобразить вектором (рис. 2.4) на комплексной плоскости или записать в виде комплексного числа в показательной форме:

, где – модуль комплексного числа, равный действующему значению синусоидальной функции, который на векторной диаграмме соответствует длине вектора в выбранном масштабе напряжений; ψ – аргумент комплексного числа, соответствующий начальной фазе синусоидальной функции, которая на комплексной плоскости откладывается от положительного направления оси действительных чисел;

j = – мнимая единица.

 
 

Комплексная величина в соответствии с формулой Эйлера может быть записана также в тригонометрической и алгебраической формах записи:

где - действительная часть комплексного числа;

- мнимая часть комплексного числа.

Для обратного перехода от алгебраической к показательной форме записи необходимо найти модуль этого комплексного числа с помощью теоремы Пифагора (рис. 2.4) и аргумент путем определения тангенса соответствующего угла:

, .

Тогда полностью все формы записи комплексной величины и связь между ними можно записать:

 
 

Тогда векторная диаграмма представляет собой совокупность векторов токов и напряжений, построенных на комплексной плоскости.




Дата добавления: 2020-10-14; просмотров: 413;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.008 сек.