Возникновение и физические процессы в электрической дуге.
Размыкание электрической цепи при значительных токах и напряжениях сопровождается электрическим разрядом между расходящимися контактами. Воздушный промежуток между контактами ионизируется и становится проводящим, в нем горит дуга. Процесс отключения состоит в деионизации воздушного промежутка между контактами, т. е. в прекращении электрического разряда и восстановлении диэлектрических свойств. При особых условиях: малых токах и напряжениях, разрыве цепи переменного тока в момент перехода тока через нуль, может произойти без электрического разряда. Такое отключение называется безыскровым разрывом.
Зависимость падения напряжения на разрядном промежутке от тока электрического разряда в газах приведена на рис. 1.
Участок I кривой – область тлеющего разряда, характеризуется высоким падением напряжения у катода (200÷250В) и малым током (до 0,1А). С ростом тока падение напряжения на разрядном промежутке возрастает до 300÷400 В. Участок II – область перехода тлеющего разряда в дуговой. Участок III – дуговой разряд. Характеризуется малым падением напряжения у электродов (10÷15 В) и большой плотностью тока (до 100 кА/см2). С ростом тока напряжение на дуговом промежутке падает, а затем не меняется. | Рис.1. Вольт-амперная характеристика электрического разряда в газах |
Электрическая дуга сопровождается высокой температурой. Поэтому дуга – явление не только электрическое, но и тепловое. В обычных условиях воздух хороший изолятор. Для пробоя 1см воздушного промежутка требуется напряжение 30кВ. Чтобы воздушный промежуток стал проводником, необходимо создать в нем определенную концентрацию заряженных частиц: свободных электронов и положительных ионов. Процесс отделения от нейтральной частицы электронов и образования свободных электронов и положительно заряженных ионов называется ионизацией. Ионизация газа происходит под действием высокой температуры и электрического поля. Для дуговых процессов в электрических аппаратах наибольшее значение имеют процессы у электродов (термоэлектронная и автоэлектронная эмиссии) и процессы в дуговом промежутке (термическая и ударная ионизация).
Термоэлектронной эмиссией называется испускание электронов с накаленной поверхности. При расхождении контактов резко возрастают переходное сопротивление контакта и плотность тока в площадке контактирования. Площадка разогревается, расплавляется и образуется контактный перешеек из расплавленного металла. Перешеек при дальнейшем расхождении контактов разрывается и происходит испарение металла контактов. На отрицательном электроде образуется раскаленная площадка (катодное пятно), которая служит основанием дуги и очагом излучения электронов. Термоэлектронная эмиссия является причиной возникновения электрической дуги при размыкании контактов. Плотность тока термоэлектронной эмиссии зависит от температуры и материала электрода.
Автоэлектронной эмиссией называется явление испускания электронов с катода под воздействием сильного электрического поля. При разомкнутых контактах к ним приложено напряжение сети. При замыкании контактов, по мере приближения подвижного контакта к неподвижному растет напряженность электрического поля между контактами. При критическом расстоянии между контактами напряженность поля достигает 1000 кВ/мм. Такой напряженности электрического поля достаточно для вырывания электронов из холодного катода. Ток автоэлектронной эмиссии мал служит только началом дугового разряда.
Таким образом, возникновение дугового разряда на расходящихся контактах объясняется наличием термоэлектронной и автоэлектронной эмиссий. Возникновения электрической дуги при замыкании контактов происходит по причине автоэлектронной эмиссия.
Ударной ионизацией называется возникновение свободных электронов и положительных ионов при столкновении электронов с нейтральной частицей. Свободный электрон разбивает нейтральную частицу. В результате получатся новый свободный электрон и положительный ион. Новый электрон, в свою очередь, ионизирует следующую частицу. Чтобы электрон мог ионизировать частицу газа, он должен двигаться с определенной скоростью. Скорость электрона зависит от разности потенциалов на длине свободного пробега. Поэтому обычно указывается не скорость движения электрона, а минимальную разность потенциалов на длине свободного пути, чтобы электрон приобрел необходимую скорость. Эта разность потенциалов называется потенциал ионизации. Потенциал ионизации газовой смеси определяется самым низким из потенциалов ионизации входящих в газовую смесь компонентов и мало зависит от концентрации компонентов. Потенциал ионизации для газов составляет 13÷16В (азот, кислород, водород), для паров металла примерно в два раза ниже: 7,7В для паров меди.
Термическая ионизация происходит под воздействием высокой температуры. Температура ствола дуги достигает 4000÷7000 К, а иногда 15000 К. При такой температуре резко возрастает количество и скорость движущихся частиц газа. При столкновении атомы и молекулы разрушаются, образуя заряженные частицы. Основной характеристикой термической ионизации является степень ионизации, представляющая собой отношение числа ионизированных атомов к общему числу атомов в дуговом промежутке. Поддержание возникшего дугового разряда достаточным числом свободных зарядов обеспечивается термической ионизацией.
Одновременно с процессами ионизации в дуге происходят обратные процессы деионизации – воссоединения заряженных частиц и образование нейтральных молекул. При возникновении дуги преобладают процессы ионизации, в устойчиво горящей дуге процессы ионизации и деионизации одинаково интенсивны, при преобладании процессов деионизации дуга гаснет.
Деионизация происходит главным образом за счет рекомбинации и диффузии. Рекомбинацией называется процесс, при котором различно заряженные частицы, приходя в соприкосновение, образуют нейтральные частицы. Диффузия заряженных частиц представляет собой процесс выноса заряженных частиц из дугового промежутка в окружающее пространство, что уменьшает проводимость дуги. Диффузия обусловлена как электрическими, так и тепловыми факторами. Плотность зарядов в стволе дуги возрастает от периферии к центру. Ввиду этого создается электрическое поле, заставляющее ионы двигаться от центра к периферии и покидать область дуги. В этом же направлении действует и разность температур ствола дуги и окружающего пространства. В стабилизированной и свободно горящей дуге диффузия играет ничтожную роль. В дуге, обдуваемой сжатым воздухом, а также в быстро движущейся открытой дуге деионизация за счет диффузии может по значению быть близкой к рекомбинации. В дуге, горящей в узкой щели или закрытой камере, деионизация происходит за счет рекомбинации.
Дата добавления: 2020-10-14; просмотров: 365;