Постановка задачі цілочислового лінійного програмування


Існує досить широкий клас задач математичного програмування, в оптимальному розв’язку яких змінні приймають дробові значення, що з економічної точки зору не має змісту, наприклад, коли говориться про випуск певної продукції (комп’ютерів, меблів, станків і т.д.). Тому це призвело до нового класу задач - задач цілочислового програмування. В загальному випадку така задача має вигляд:

Знайти максимум (мінімум) функції

(6.1)

за умов

(6.2)

(6.3)

До задач цього класу можна віднести задачу про використання сировини, транспортну задачу, задачу раціонального розкрою матеріалів, а інший клас задач цілочислового програмування містить задачі оптимізації, в яких змінні набувають лише двох цілих значень - 0або 1 (бульові змінні). Прикладом такої задачі є задача про комівояжера, її зміст полягає в тому, що комівояжеру потрібно відвідати кожне з п міст, починаючи і закінчуючи свій маршрут в одному й тому ж місті і не заїжджаючи двічі в одне місто. Якщо між містами і та j немає прямого маршруту, то вважають, (на практиці беруть достатньо велике число). Крім цього, можливо, що . Задача полягає у знаходженні найкоротшого шляху комівояжера. Математична модель задачі має вигляд:

(6.4)

де - відстань між містами і та j; - бульові змінні:

Обмеження, задані першою формулою в системі (6.4), - це умова щодо одноразового в’їзду в кожне місто, а другою формулою - щодо одноразового виїзду з кожного міста.

Розглянемо ще один приклад задачі з бульовими змінними. Інвестиційна компанія може вкласти кошти в декілька підприємств. Ефективність кожного проекту оцінена згідно з тим, що його реалізація можлива за певних умов. Кожному проекту відповідає невідома, яка рівна 1 чи 0 залежно від того, вкладає чи не вкладає інвестиційна компанія кошти в підприємство.

В деяких реальних задачах ставиться умова цілочислових значень не до всіх змінних, а до однієї чи декількох. Такі задачі називають частково цілочисловими.

 



Дата добавления: 2016-07-22; просмотров: 1700;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.