Показательная форма комплексного числа.
По формуле Эйлера, выражение может быть записано в виде
.
Так, например, мнимой единице соответствует аргумент и модуль 1, поэтому запись в тригонометрической и показательной формах такова:
.
=
Умножение и деление в показательной форме.
В показательной форме.
Пример. Поделить .
Решение. =
=
=
=
=
.
Формула Муавра, степень. Корни.
Возводить комплексные числа в степень можно с помощью такой формулы:
она называется формулой Муавра и позволяет не перемножать множество скобок, если требуется вычислить большую степень числа
Доказательство.Если умножим в тригонометрической форме не два разных числа, а одно и то же число , то получим:
=
.
Таким же образом можно умножить в третий раз и снова в аргументе прибавится
, а модуль снова умножится на
.
=
=
Таким образом, по индукции, можно доказать, что
=
.
Но ещё легче возводить в степень с помощью показательной формы числа: , здесь даже доказывать по индукции нет необходимости.
Пример. Найти по формуле Муавра.
Вычислим модуль и аргумент.
.
По формуле Муавра, =
=
= 16.
В показательной форме: =
=
= 16 .
ЛЕКЦИЯ № 2. 9.09.2020
Корни порядка n.Корень порядка n вычисляется по такой формуле:
Доказательство.Если возведём в степень n, получим =
.
Добавка после возведения в степень станет кратной
, то есть точка, отстоящая на угол
, просто опишет один лишний оборот вокруг начала координат, то есть к аргументу добавится 360 градусов, и придёт в ту же точку, что и было бы без
.
Пример. Найдите все значения корня .
Сначала представим комплексное число, которое находится под знаком корня, в тригонометрической форме.
Точка расположена на мнимой оси выше начала координат, поэтому аргумент , модуль
.
Теперь находим все 3 корня.
при k = 0,1,2.
, отсюда:
1) =
=
2) =
=
3) =
=
Чертёж:
Если к исходному углу добавить 120 градусов, то для куба этого числа добавится 360 градусов, и результат будет точно такой же. С этим фактом как раз и связано наличие лишнего слагаемого в формуле.
Квадратных корней два, а именно . Это происходит по той же причине: если число было положительным, то его аргумент был 0, и тогда по формуле
то есть
=
=
, что и соответствует
при
и
. К аргументу прибавляется по 360 / 2 = 180 градусов.
Дата добавления: 2020-10-14; просмотров: 517;