Индуктивные датчики
Индуктивные датчики применяют для преобразования малых линейных или угловых перемещений в электрические сигналы. Принцип их действия основан на зависимости индуктивного сопротивления катушки от изменения зазора вмагнитопроводе, от перемещения магнитопровода в катушке или от изменения площади зазора.
Индуктивный преобразователь датчика с подвижным якорем (изменяющимся зазором) представляет собой катушку индуктивности 3 с магнитопроводом 2 и подвижным якорем 1 (рис. 3.6, а). Катушка индуктивности с магнитопроводом, называемая статором, закрепляется неподвижно, а якорь механически соединяется с подвижной частью системы измерения, перемещение которой необходимо преобразовать в электрический сигнал. Перемещение якоря изменяет воздушный зазор δ (входная величина преобразователя), вызывает изменение индуктивного сопротивления катушки и, как следствие этого, выходной величины тока I при постоянном напряжении U0 .
Чувствительность индуктивных преобразователей с изменяющимся воздушным зазором уменьшается с увеличением зазора δ, поэтому их используют для измерения и контроля очень малых перемещений (до 2 мм). В таком диапазоне рабочих перемещений их чувствительность не превышает 2 мкм.
Индуктивные преобразователи с перемещающимся магнитопроводом (рис. 3.6, б) способны измерять большие перемещения (до 50мм).
У индуктивных преобразователей с изменяющейся площадью воздушного зазора (рис. 3.6, в) статическая характеристика линейна только на определенном участке. Линейность нарушается, когда активное сопротивление становится сравнимым с индуктивным. Диапазоны перемещения якоря больше (до 8 мм), чем у преобразователей с изменяющимся воздушным зазором, однако чувствительность ниже.
Все перечисленные выше виды индуктивных преобразователей обладают высокой надежностью, имеют практически неограниченный срок службы и большую мощность выходного сигнала (до нескольких ватт). К недостаткам можно отнести нереверсивность статической характеристики, небольшой диапазон перемещения якоря, наличие тока холостого хода и влияние колебаний амплитуды и частоты напряжения питания. Эти недостатки практически полностью отсутствуют у дифференциальных индуктивных преобразователей.
Дифференциальный индуктивный преобразователь (рис. 3.6, г) имеет два статора 2 с катушками индуктивности 3 и один подвижный якорь 1. При отклонении якоря от среднего положения происходит изменение индуктивного сопротивления обеих катушек и на выходе преобразователя появляется напряжение Uн. Катушки индуктивности включаются либо в дифференциальную измерительную схему, либо работают как смежные плечи мостовой измерительной схемы.
Дифференциальные индуктивные преобразователи по сравнению с ранее рассмотренными конструкциями обладают более высокими точностью и чувствительностью. Их статическая характеристика линейна и реверсивна. Поэтому они получили наибольшее распространение.
Трансформаторные преобразователи являются разновидностью индуктивных. Они представляют собой трансформаторы с пере- менным коэффициентом трансформации за счет изменения коэффициента взаимоиндукции между обмотками. Трансформаторные преобразователи применяют для преобразования небольших линейных и угловых перемещений в электрический сигнал (напряжение переменного тока).
Первичная обмотка 2 (рис. 3.7) дифференциального трансформаторного преобразователя с угловым перемещением якоря намотана на центральном стержне 1 магнитопровода, а две совершенно одинаковые вторичные обмотки 3 располагаются на крайних стержнях. Они соединены последовательно и имеют встречную намотку. При симметричном положении якоря 4 по отношению к стержню 1 во вторичных обмотках будут индуцироваться одинаковые по значению и противоположные по фазе ЭДС, а напряжение на выходе преобразователя будет равно нулю. При повороте якоря, механически связанного с подвижной частью системы измерения, изменяется значение магнитных потоков и в соответствии с этим значение ЭДС, т. е. на выходе появляется напряжение, амплитуда которого равна разности амплитуд ЭДС вторичных обмоток. Статическая характеристика рассмотренного преобразователя линейна и реверсивна. Реверсивность означает изменение в знаке выходного сигнала при изменении знака входного сигнала. Чувствительность преобразователя в 2 раза выше чувствительности обычных индуктивных преобразователей.
Интересна конструкция ферродинамического преобразователя, предназначенного для преобразования угловых перемещений в электрические сигналы.
Ферродинамический преобразователь (рис. 3.8) имеет магнито-провод, состоящий из шихтованного ярма 1 с полюсными наконечниками 2 и сердечника 3. На сердечнике 3 укреплены агатовые подпятники (на схеме не показаны), в которых на кернах установлена поворотная рамка 4, механически соединенная с подвижной частью системы измерения. Концы обмотки подвижной рамки подсоединяются с помощью спиральных пружин и проводов. Принцип работы преобразователя заключается в следующем. При подаче переменного тока на обмотку возбуждения 5 в магнитопроводе возникает магнитный поток. Если рамка 4 расположена по нейтрали ММ, то значение наведенной ЭДС равно нулю. При повороте рамки на некоторый угол α в ней индуцируется ЭДС, величина которой пропорциональна углу поворота. Рабочий угол рамки от нейтрали составляет 40°. В зависимости от типа преобразователя напряжение на выходе рамки изменяется от —1 до +1 В или от 0 до 2 В.
Высокочастотные индуктивные преобразователи позволяют измерить толщину фольги металлов, толщину гальванических покрытий, разностенность металлических труб и т. д. Принцип их действия основан на изменении индуктивности обмотки при возникновении вихревых токов в проводящем теле, расположенном вблизи этой обмотки.
В таких преобразователях используется так называемый поверхностный эффект, т. е. затухание вихревых токов по мере проникновения их в глубь проводящей среды, обусловленных переменным магнитным полем; при этом разность токов возбуждающего поля и поля вихревых токов уменьшается.
Емкостные датчики
Основу этих датчиков составляют емкостные преобразователи, которые преобразуют неэлектрические величины (перемещение, уровень жидкости, влажность, усилие и т. д.) в изменение электрической емкости. Емкостной преобразователь является частью регулирующего или измерительного устройства с чувствительным элементом, выполненного в виде конденсатора и реагирующего на изменение измеряемого параметра технологического процесса. Чувствительный элемент емкостного преобразователя представляет собой плоский или цилиндрический конденсатор, у которого при воздействии измеряемого параметра изменяется расстояние между пластинами, площадь пластин или диэлектрическая проницаемость среды между обкладками. Емкость конденсатора C возрастает с увеличением активной площади F и диэлектрической проницаемости ξ (для воды ξ =81; для воздуха ξ = 1; для формовочной смеси ξ = 1 ... 4) и уменьшается с увеличением расстояния между пластинами X, т. е. C = ξ0·ξ·F/X, где ξ0 — диэлектрическая проницаемость вакуума, ф/м. Учитывая влияние перечисленных факторов на размеры чувствительного элемента, различают три типа емкостных преобразователей: с переменным расстоянием между пластинами, с изменяемой площадью пластин и изменяемой диэлектрической проницаемостью среды. Перечисленные параметры емкостных преобразователей являются входными величинами, а выходной величиной будет емкость конденсатора.
Емкостные преобразователи с переменным расстоянием между пластинами (рис. 3.9, а) как правило конструктивно выполняют в виде плоского конденсатора, состоящего из двух или более пластин, одна из которых закреплена, а другая механически связана с подвижной частью системы измерения. Емкостные преобразователи этого типа применяют для измерения толщины изделий, а также используют для измерения давления, усилия или вибрации.
Емкостные преобразователи с изменяемой площадью пластин выполняют как цилиндрическими (рис. 3.9, б), так и плоскими (рис. 3.9, в).
Цилиндрический емкостной преобразователь (рис. 3.9, б) представляет собой два цилиндра разного диаметра, помещаемые один в другой. Емкость конденсатора зависит от осевого перемещения δ внутреннего цилиндра. Преобразователи этого типа предназначаются для измерения линейных перемещений.
В плоском преобразователе (рис. 3.9, в) емкость зависит от изменения активной площади пластин при повороте одной пластины относительно другой. Такие преобразователи используют при измерении угловых перемещений.
Емкостные преобразователи с изменением диэлектрической проницаемости среды между пластинами могут применяться, например, для регулирования влажности формовочной смеси и дозирования воды при ее приготовлении. При колебании уровня жидкости изменяется емкость конденсатора (рис. 3.9, г), электродами которого служат корпус 1 и металлический стержень 2. Емкость такого преобразователя складывается из емкости цилиндрического конденсатора без жидкости и параллельно включенной емкости цилиндрического конденсатора с жидкостью. Емкость и чувствительность такого преобразователя увеличиваются с уменьшением отношения диаметров электродов, а также с ростом высоты цилиндра.
Емкостные преобразователи просты по устройству, обладают достаточно высокой чувствительностью, малыми размерами и массой. Однако они имеют три недостатка: мощность выходного сигнала мала, поэтому необходимо применять усилитель; при промышленной частоте электрического тока практически невозможно получить достаточную мощность, в этой связи они получают питание от источника высокой частоты (10 кГц и более); сильное влияние оказывают паразитические емкости и посторонние электрические поля, поэтому требуется тщательное экранирование как самих датчиков, так и соединительных проводов.
Дата добавления: 2018-06-24; просмотров: 2962;