Спектральное представление непериодических сигналов


Для спектрального представления непериодических сигналов вводится понятие спектральной плотности.

Спектральная плотность – это комплексно-значная функция частоты, одновременно несущая информацию, как об амплитуде, так и о фазе элементарных синусоид.

Спектральная плотность и сигнал связаны между собой парой преобразований Фурье:

 

(2.9)

(2.10)

 

Поскольку для представления спектров непериодических сигналов используются интегральные преобразования Фурье, эти спектры сплошные.

Спектральная плотность может быть представлена в виде:

Вещественная часть спектральной плотности есть чётная функция частоты:

Мнимая часть спектральной плотности есть нечётная функция частоты:

Если записать спектральную плотность в показательной форме, то можно выделить её модуль и аргумент:

Модуль спектральной плотности называется амплитудным спектром сигнала:

а аргумент спектральной плотности – фазовым спектром сигнала.

Пара преобразований Фурье имеет фундаментальное значение в теории электросвязи, так как многие характеристики сигналов связаны между собой этими преобразованиями.

Все свойства спектральной плотности объединены в основных теоремах о спектрах.

 

Теоремы о спектрах

I. Свойство линейности.

Если имеется некоторая совокупность сигналов причём ,…, то взвешенная сумма сигналов преобразуется по Фурье следующим образом:

(2.11)

Здесь - произвольные числовые коэффициенты.

 

II. Теорема о сдвигах.

Предположим, что для сигнала известно соответствие . Рассмотрим такой же сигнал, но возникающий на секунд позднее. Принимая точку за новое начало отсчёта времени, обозначим этот смещённый сигнал как . Введём замену переменной: . Тогда ,

Модуль комплексного числа при любых равен 1, поэтому амплитуды элементарных гармонических составляющих, из которых складывается сигнал, не зависят от его положения на оси времени. Информация об этой характеристике сигнала заключена в частотой зависимости аргумента от его спектральной плотности (фазовом спектре).

 

III. Теорема масштабов.

 

Предположим, что исходный сигнал подвергнут изменению масштаба времени. Это означает, что роль времени играет новая независимая переменная ( - некоторое вещественное число.) Если > 1, то происходит “ сжатие” исходного сигнала; если же 0< <1, то сигнал “растягивается” во времени. Если , то :

Произведём замену переменной , тогда , откуда следует:

(2.13)

При сжатии сигнала в раз на временной оси во столько же раз расширяется его спектр на оси частот. Модуль спектральной плотности при этом уменьшается в раз.

Очевидно, что при растягивании сигнала во времени ( т.е. при <1) имеет место сужение спектра и увеличение модуля спектральной плотности.

 

IV. Теорема о спектре производной и неопределённого интеграла.

 

Пусть сигнал и его спектральная плоскость заданы. Будем изучать новый сигнал и поставим цель найти его спектральную плотность .

По определению:

(2.14)

Преобразование Фурье – линейная операция, значит, равенство (2.14) справедливо и по отношению к спектральным плотностям. Получаем по теореме о сдвигах:

(2.15)

Представляя экспоненциальную функцию рядом Тейлора: подставляя этот ряд в (2.15) и ограничиваясь первыми двумя числами, находим

(2.16)

Итак, дифференцирование сигнала по времени эквивалентно простой алгебраической операции умножения спектральной плотности на множитель . Поэтому говорят, что мнимое число является оператором дифференцирования, действующим в частотной области.

Вторая часть теоремы. Рассмотренная функция является неопределённым интегралом по отношению к функции . Интеграл это есть , значит - его спектральная плотность, а из формулы (2.16) равна:

(2.17)

Таким образом, множитель служит оператором интегрирования в частотной области.

 

V. Теорема о свёртке.

 

Как известно, при суммировании сигналов их спектры складываются. Однако спектр произведения сигналов не равен произведению спектров, а выражается некоторым специальным интегральным соотношением между спектрами сомножителей.

Пусть и - два сигнала, для которых известны соответствия , .Образуем произведение этих сигналов: и вычислим его спектральную плотность. По общему правилу:

(2.18)

Применив обратное преобразование Фурье, выразим сигнал через его спектральную плотность и подставим результат в (2.18):

Изменив порядок интегрирования, будем иметь:

 

откуда:

(2.19)

Интеграл, стоящий в правой части называют свёрткой функций V и U. Символически операция свёртки обозначается как *

Таким образом, спектральная плотность произведения двух сигналов с точностью до постоянного числового множителя равна свёртке спектральных плотностей сомножителей:

(2.20)

Операция свёртки коммутативна, т.е. допускает изменения порядка следования преобразуемых функций:

Теорема о свёртке может быть обращена: если спектральная плотность некоторого сигнала представляется в виде произведения , причём

и , то сигнал является свёрткой сигналов и , но уже не в частной , а во временной области:

(2.21)

 

VI. Теорема Планшереля

 

Пусть два сигнала и , в общем случае комплексные , определены своими обратными преобразованиями Фурье:

;

.

Найдём скалярное произведение этих сигналов, выразив один из них, например , через его спектральную плотность:

 

Здесь внутренний интеграл представляет собой спектральную плотность сигнала поэтому:

(2.22)

Скалярное произведение двух сигналов с точностью до коэффициента пропорционально скалярному произведению их спектральных плотностей.

 



Дата добавления: 2016-07-22; просмотров: 3054;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.