Автокорреляционная функция сигналов


 

Задача корреляционного анализа возникла из радиолокации, когда нужно было сравнить одинаковые сигналы, смещённые во времени.

Для количественного определения степени отличия сигнала U(t) и его смещённой во времени копии принято вводить автокорреляционную функцию (АКФ) сигнала U(t), равную скалярному произведению сигнала и его сдвинутой копии.

(4.8)

Свойства АКФ

1) При автокорреляционная функция становится равной энергии сигнала:

(4.9)

2) АКФ – функция чётна

(4.10)

3) Важное свойство автокорреляционной функции состоит в следующем: при любом значении временного сдвига модуль АКФ не превосходит энергии сигнала:

4) Обычно, АКФ представляется симметричной линей с центральным максимумом, который всегда положителен. При этом в зависимости от вида сигнала U(t) автокорреляционная функция может иметь как монотонно убывающей, так и колеблющийся характер.

Например:

АКФ прямоугольного видеоимпульса

 

АКФ пачки из трёх прямоугольных видеоимпульсов, сдвинутых друг относительно друга на время T.

 

АКФ бесконечной периодической последовательности видеоимпульсов:

Существует тесная связь между АКФ и энергетическим спектром сигнала.

В соответствии с формулой (4.8) АКФ есть скалярное произведение . Здесь символом обозначена смещённая во времени копия сигнала .

Обратившись к теореме Планшереля – можно записать равенство:

Спектральная плотность смещённого во времени сигнала , откуда . Таким образом приходим к результату

(4.12)

Квадрат модуля спектральной плотности представляет собой энергетический спектр сигнала. Итак энергетический спектр и автокорреляционная функция связаны парой преобразований Фурье.

Ясно что имеется и обратное соотношение

(4.13)

Эти результаты принципиально важны по двум причинам: во-первых оказывается возможным оценивать корреляционные свойства сигналов, исходя из распределения их энергии по спектру. Во-вторых, формулы (4.12), (4.13) указывают путь экспериментального определения энергетического спектра. Часто удобнее вначале получить АКФ, а затем, используя преобразование Фурье, найти энергетический спектр сигнала. Такой приём получил распространение при исследовании свойств сигналов с помощью быстродействующих ЭВМ в реальном масштабе времени.

Часто вводят удодный числовой параметр – интервал корреляции , представляющий собой оценку ширины основного лепестка АКФ.

Например:

В данном случае:

Отсюда: (4.14)

Интервал корреляции тем меньше, чем выше верхняя граничная частота спектра сигнала. (Чем шире полоса частот сигнала тем уже основной лепесток АКФ.)

 



Дата добавления: 2016-07-22; просмотров: 3083;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.