Скалярный потенциал магнитного поля


 

В той части пространства, где плотность тока d равна нулю (правая часть уравнения (3.4) равна нулю), магнитное поле можно рассматривать как потенциальное и напряженность магнитного поля можно представить в виде

, (3.5)

где Uм - скалярный потенциал магнитного поля.

В областях не занятых током (только для этих областей имеет смысл функция Uм) при постоянном значении магнитной проницаемости (m = const) скалярный потенциал магнитного поля подчиняется уравнению Лапласа:

что вытекает из уравнений (3.2) и (3.5).

Линейный интеграл от напряженности магнитного поля по замкнутому контуру l, не охватывающему контура с током, равен нулю (закон полного тока). Поэтому (как в электростатическом поле), если условно принять равным нулю потенциал в некоторой точке Р (Uмр = 0), то разность потенциалов в точках А и Р будет равна потенциалу точки А:

Однако, если выбрать такой путь интегрирования, который охватывает контур с током, правая часть уравнения (3.3) не будет равна нулю. Поэтому скалярный потенциал магнитного поля является функцией неоднозначной, но эта неоднозначность не оказывает влияния на расчет напряженности поля (i = const).

Разность магнитных потенциалов между двумя точками называют падением магнитного напряжения между этими точками.

 



Дата добавления: 2016-07-18; просмотров: 1518;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.