Специальные исследования в области акустоэлектрических преобразований
В таком кратком курсе, как этот, невозможно рассказать обо всех возможных «тонкостях» измерений в этом виде СИ. Однако попытаемся изложить самое основное. Вначале придется коснуться физики происходящих процессов, поскольку без ее правильного понимания невозможна организация измерительных работ и выявление возможных ошибок и помех.
Итак, что же является физической основой того, что мы назвали акустоэлектрическим преобразованием? В качестве преобразователей механической энергии акустического сигнала в электрические могут выступать элементы технических средств, обладающие различной природой и достаточно широким спектром физических свойств.
В первую очередь, это обратный эффект Фарадея. Напомним, что он заключается в том, что при движении проводника поперек силовых линий магнитного поля на его концах наводится ЭДС (при замкнутом проводнике - течет ток). Магнитное поле существует всегда (не будем забывать о магнитном поле Земли, не говоря уже о том, что любая деталь из сплавов железа, некоторых других металлов и их сплавов всегда намагничена). Следовательно, перемещение любого проводника (вибрация, дрожание), особенно многовитковой обмотки, неизбежно вызывает появление напряжения или тока, соответствующих акустическому (вибрационному) воздействию. Поэтому все моточные изделия (трансформаторы, реле, катушки индуктивности, дроссели и т.д. в составе ВТСС) всегда являются источниками акустоэлектрических преобразований. Кроме того, возникающая под воздействием акустических сигналов вибрация всякого рода сердечников перечисленных компонентов (это более характерно для материалов с высоким д) вызывает (за счет волн сжатия в материале) изменение их магнитной проницаемости (обратный магнитострикционный эффект, или эффект Веллари), что также вызывает появление сигнала в обмотке.
Вторая причина, часто проявляющаяся, это - различные емкостные эффекты. Если в конденсаторе, образованном некими проводящими элементами, одна обкладка движется относительно другой - изменяется емкость этого конденсатора, следовательно, меняется напряжение на обкладках.
Третий, весьма часто встречающийся эффект - это пьезоэффект. Большое число керамических конденсаторов выполняется из материалов типа ЦТС (цирконий-титанат свинца). Такие материалы всегда обладают пьезострикционным эффектом, т.е. при приложении к ним механического усилия (изгиб, сдвиг, сжатие и т.д.) на обкладках конденсатора генерируются электрические потенциалы, пропорциональные приложенному усилию. Короче говоря - нормальный пьезоэлектрический микрофон.
Есть еще ряд более «тонких» эффектов, но и этого достаточно, чтобы понять основной «закон» - «Микрофонит все!» И только измерениями можно доказать, что в каждом данном конкретном случае и при строго определенных режимах работы технических средств сигнал акустоэлектрического преобразования меньше нормы. Других способов не существует.
Все изложенное выше касается прямого акустоэлектрического преобразования.
Однако необходимо помнить, что в составе многих технических средств всегда штатно работают один или несколько разного рода ВЧ автогенераторов, как синусоидальных, так и релаксационных. Воздействие на их элементы (конденсаторы, дроссели, системы заряженных проводников и т.д., о чем говорилось выше) механических колебаний акустических сигналов, в общем случае, всегда (вопрос только в какой степени) приводит к изменению амплитуды и/или частоты/фазы этих колебаний, т.е. к модуляции. ВЧ колебания этих генераторов в той или иной степени излучаются в окружающее пространство и/или распространяются по отходящим от технических средств линиям. Так образуются модуляционные высокочастотные каналы акустоэлектрических преобразований, которые опасны не столько сами по себе, сколько именно тем речевым сигналом, который модулирует ВЧ колебания автогенераторов. Для этих каналов приходится учитывать и величину (амплитуду) несущей и коэффициент (индекс) модуляции.
Рассмотрев вкратце причины появления сигналов АЭП, познакомимся с основными схемами измерений.
Учитывая постановку задачи для прямого акустоэлектрического преобразования (определение значений сигналов АЭП речевого диапазона частот в отходящей от ВТСС линии, выходящей за пределы КЗ) типовая схема измерения приведена на рис. 5.12.
Исследуемое техническое средство может быть подключено к реальной отходящей линии, к некому имитатору или не подключаться ни к какой линии (режим «холостого хода»). Рассмотреть все возможные варианты и их особенности в рамках этого курса не представляется возможным, ограничимся только перечислением этих вариантов.
К отходящей линии (или к выходному разъему ВТСС) подключается измерительный прибор. Причем это подключение может быть гальваническим (как показано на рисунке) или бесконтактным (с помощью токового трансформатора).
Во всех случаях необходимо проводить измерения для всех возможных вариантов подключения: симметрично, несимметрично, два провода - «земля», так называемая цепь Пикара, по «разбитым» парам, если количество проводов более двух, по отношению к посторонней земле, два (или несколько) проводов вместе с использованием трансформатора тока или любым другим способом, который только придет в голову!!! Потенциальный противник всегда будет искать способ подключения с наилучшим отношением сигнал/помеха. Выбор из этого множества вариантов ложится на заказчика, или, если заказчик не определяет область исследований -на оператора.
Гальваническое подключение осуществляется, как правило, через стандартный предусилитель вольтметра (например, типа 233-5, 233-6, 233-7 нановольтметров Unipan). Установка токового трансформатора может производиться на один провод линии или на несколько одновременно, выбирая наилучшую комбинацию с точки зрения перехвата. Кроме того, применяя токовый трансформатор, необходимо учитывать, что он измеряет ток в линии, а нормируется напряжение в ней. Следовательно, необходим пересчет результатов измерений через эквивалентное сопротивление линии или источника сигнала АЭП.
Исследования любого технического средства необходимо проводить во всех возможных режимах его работы, если не оговаривается перечень режимов, при которых техническое средство будет работать при эксплуатации. Так, например, исследования многоскоростного бытового вентилятора необходимо проводить при включении его на разных скоростях с учетом допустимых отклонений напряжения питания при проведении измерений для каждой скорости. За конечный результат должно приниматься наибольшее значение опасного сигнала из всех измеренных при различных режимах. В установках прямой директорской (диспетчерской) связи, в которых существуют телефонный (на микротелефонную трубку) и громкоговорящий (на микрофон и динамик) режимы, исследования необходимо проводить как в том, так и в другом режиме, если в задании на проведение измерений не указан только какой-либо один рабочий режим. И таких примеров может быть множество.
Во всех случаях в протоколе исследований необходимо указывать все возможные режимы работы ТС с обоснованным указанием, по каким причинам тот или иной режим работы не проверялся.
Схема измерения сигналов АЭП от ТС, приведенная на рис. 5.12, достаточно стандартна для теории измерений и особых пояснений, на наш взгляд, не требует.
В ней опущены очень важные на практике вопросы заземления приборов, их электропитания, взаимного размещения. Необходимо отметить, что уровень помех в тракте измерения от этих факторов может меняться в десятки и сотни раз. Неоптимальное построение измерительного комплекса может быть причиной очень далеких от реальности результатов.
Борьба с помехами в измерительных трактах хорошо освещается в теории радиоизмерений и измерений в технике связи; все общие принципы этой теории справедливы и для данной методики, а дать рекомендации по многочисленным нюансам каждой конкретной измерительной схемы просто не представляется возможным. Данную задачу решает каждый оператор самостоятельно, опираясь на свой опыт, знание предмета измерений и в какой-то степени -интуицию.
Учитывая степень малости измеряемых в подавляющем большинстве сигналов акустоэлектрических преобразований, определенное внимание следует уделить снижению наводок тест-сигнала на измеряемое техническое средство и измерительный приемник.
Как правило, экранированную колонку размещают на расстоянии 1 м от исследуемого технического средства. Это расстояние не очень критично и выбирается, в первую очередь, исходя из требуемого уровня звукового давления в месте размещения технического средства и отсутствия наводок от колонки на исследуемое ВТСС.
Понятно, что даже хорошо экранированная колонка создает некоторые электрическое и магнитное поля, существование которых не должно вносить погрешности в измерения. Простейший способ определения того, что мы наблюдаем наводку тест-сигнала от акустического излучателя, измерительного тракта генератор-усилитель мощности и соединительных кабелей или непосредственно сигнал АЭП, состоит в «прикрывании» лицевой панели акустического излучателя звукопоглощающей шторкой с целью изменения (снижения) уровня воздействующего на ТС акустического сигнала, контролируемого с помощью шумомера. При этом наводка за счет воздействия электромагнитного поля генераторного оборудования на техническое средство, если она существует, останется неизменной, т.е. показания измерительного прибора, подключенного к техническому средству, не изменятся или, в крайнем случае, изменятся непропорционально снижению уровня акустического сигнала. В первом случае измеряемая величина тест-сигнала, «чистая» наводка, во втором - смесь сигнала наводки и сигнала акустоэлектрических преобразований.
Другим, достаточно эффективным способом определения достоверности измерения именно сигнала акустоэлектрического преобразования при той же измерительной схеме является изменение расстояния между генераторным оборудованием, включая акустический излучатель, и исследуемым техническим средством. При линейном изменении сигнала акустоэлектрического преобразования от расстояния измеряемый сигнал является следствием акустического воздействия на техническое средство, а при изменении измеряемого сигнала по закону 1/Я2 - 1/Я3 - наводка за счет электрического или магнитного полей генераторного оборудования. Этим способом удобно пользоваться для определения того, какая из составляющих электромагнитного поля преобладает в сигнале наводки. При изменении сигнала по закону близкому к 1/Я3 наводка определяется преимущественно магнитным полем, при изменении по закону 1/Я2 - электрическим полем. Понимание природы образования сигнала наводки определяет и меры борьбы с ней. При электрической наводке, как правило, бывает достаточно организовать правильную схему заземления измерительного комплекса в целом. При магнитной наводке значительное снижение можно получить только симметрированием, применением экранированных симметричных кабелей со скрученными парами и разносом элементов измерительного (генераторного) тракта и технических средств.
Дата добавления: 2016-07-18; просмотров: 3071;