Новые перспективные виды памяти будущих компьютеров
Перспективы развития оперативной памяти
2.1 MRAM
MRAM (Magneto-Resistive RAM — «Магниторезистивная RAM» или «Магниторезистивное ОЗУ») — однокристальная полупроводниковая оперативная память, при производстве которой используются магнитный материал (часто применяемый в магнитных считывающих головках) и переход с магнитным туннелированием — MTJ (Magnetic Tunnel Junction). В основу современной конструкции MRAM положена концепция, разработанная немецким физиком Андреасом Нейем (Andreas Ney) и его коллегами из Института твердотельной электроники им. Пауля Друде, которая была опубликована в октябрьском номере 2003 журнала Nature. Авторы предложили использовать так называемые «программируемые логические элементы» на основе MRAM-памяти. Вычислительное устройство состоит из логических элементов «и», «или», «и-не» и «или-не». Устройство памяти состоит из элементов, у каждого из которых есть два независимых входа и возможны четыре начальные состояния. Элемент MRAM-памяти содержит два разделенных промежутком магнитных слоя. Если магнитные моменты обоих слоев параллельны, электрическое сопротивление всего элемента небольшое, это отвечает состоянию «1». Если антипараллельны — сопротивление велико и это соответствует состоянию «0». Направления магнитных моментов можно менять на противоположные, пропуская электрический ток по каждой из линий. Независимость входов для каждого из магнитных слоев дает возможность иметь четыре начальных состояния: «00», «01», «10» и «11», гдe «00» отвечает состоянию с отрицательной величиной тока через оба магнитных слоя, а «01» — отрицательному току через слой А и положительному через слой В и т.д. Этим можно осуществлять логические операции «и» и «или». Если добавить еще один вход по току, то появится возможность выполнения логических операций «и-не» и «или-не».
Производительность MRAM зависит от структуры и состава MTJ. Исследования, проведенные Renesas Technology Corp. совместно с Mitsubishi Electric, заключались в изучении зависимости величины магниторезистивного соотношения от резистивной поверхности перехода. Продемонстрированные в 2004 прототипы MRAM имеют микроархитектуру 1T-1MTJ (1 транзистор и 1 переход на ячейку памяти); размер магниторезистивного туннеля одного элемента — TMRE (Tunnel Magneto-Resistance Element) тогда составлял 0,26x0,44 µм²; размер ячейки памяти — 0,81 µм².
В 2003 японская компания NEC представила на конференции IEEE в Сан-Франциско экспериментальную микросхему MRAM, изготовленной по 0,25-мкм КМОП-технологии и 0,6-мкм технологии MRAM. Структура ячейки памяти включала числовую шину (word line), разрядную шину (bit line) и магнитный туннельный переход (MTJ). Благодаря особой конструкции массива ячеек памяти инженерам NEC удалось добиться заметного снижения паразитных шумов, что привело к улучшению соотношения сигнал/шум во время операции чтения данных и одновременно позволило уменьшить размеры чипа на 20%.
В 2004 компания Renesas Technology продемонстрировала прототип чипа 1 Мбит MRAM, выполненного с использованием 0,13-мкм CMOS технологического процесса. Его характеристики: тактовая частота — 143 МГц при напряжении питания 1,2 В; кол-во циклов перезаписи — свыше 1 трлн (при Т = 150°С без ухудшения характеристик); время чтения данных из ячейки — 5,2 нс.
В последние годы компании Toshiba и NEC разрабатывают MRAM совместно. Согласно опубликованным в феврале 2006 данным, им удалось создать новое изделие, в котором объединены максимальная плотность и наилучшие скоростные показатели операций чтения и записи, достигнутые для MRAM на данный момент. Ее характеристики: объем памяти — 16 Мбит; скорость чтения и записи — 200 Мбит/с (время цикла — 34 нс); напряжение питания — 1,8 В, что делает ее пригодной для мобильных устройств с батарейным питанием. Основная трудность, с которой столкнулись разработчики, была связана с повышением скорости чтения. Цепь, генерирующая магнитное поле для записи, замедляла операцию чтения из ячейки памяти. Решение было найдено в разделении цепей чтения и записи. Помимо увеличения скорости работы, такой прием позволил снизить эквивалентное сопротивление на 38% за счет "разветвления" тока записи.
В июле 2006 компания Freescale Semicondactor (до 2004 была подразделением корпорации Motorola) представила первые промышленные образцы 4 Мбитных чипов MRAM — MR2A16A, обогнав таких гигантов ИТ-индустрии, как HP и IBM, которые планировали начать их выпуск еще в 2004. Начато их промышленное производство на фабрике в Аризоне. Себестоимость производства (~$25) пока еще очень велика, что, тем не менее, считается быстро преодолимым.
Основными достоинствами MRAM, наряду с достигнутым самым высоким быстродействием, являются: практически неограниченное число допускаемых циклов записи/считывания (например, флэш-накопители имеют ограничения в этом плане) и сохранение записей при отключении питания. Это позволяет ей претендовать на роль универсальной памяти, объединяющей свойства DRAM, SDRAM и флэш-памяти. Поэтому предполагается, что MRAM в перспективе смогут заменить не только современные устройства оперативной памяти, но и жесткие диски, в результате чего архитектура ПК существенно упростится.
2.2 Память на основе графеновой наноленты
Инженеры из Института физики твёрдого тела им. Макса Планка (Германия) и Миланского технического университета (Италия) сконструировали микроскопические ячейки памяти на основе графеновых нанолент.
Для того чтобы изготовить узкие — шириной менее 20 нм — ленты, авторы расположили на однослойном графене нановолокна оксида ванадия V2O5. Заготовки поместили под пучок ионов аргона, который удалил графен с неприкрытых участков; затем образцы обрабатывались водой для смыва нановолокон. Оставшиеся наноленты имели аккуратные края, что положительно сказывалось на их характеристиках.
Дальнейшие эксперименты показали, что такие ленты позволяют создавать надёжные ячейки памяти, довольно быстро совершающие переход между двумя состояниями с разной проводимостью. «Эффект памяти, вероятно, связан с влиянием зарядов, захваченных расположенными вокруг нанолент молекулами воды, которые адсорбируются на подложке из диоксида кремния, используемой в наших устройствах», — рассуждает один из авторов Роман Сордан (Roman Sordan).
В опытах переключение между двумя состояниями выполнялось с помощью следовавших с частотой до 1 кГц импульсов длительностью до 500 нс, причём устройства успешно выдержали более 107циклов переключения. Ячейки памяти на нанолентах также имеют очень небольшие размеры, что учёные считают важным преимуществом своей разработки. «Такие ячейки можно использовать для создания как статической оперативной памяти с произвольным доступом (SRAM), так и энергонезависимой памяти», — отмечает г-н Сордан.
В будущем исследователи намерены приспособить наноленты для изготовления логических вентилей. «Мы уже конструировали графеновые вентили, но наноленты, пожалуй, подходят лучше», — комментирует профессор Сордан.
2.3 Оперативная память на нанотрубках
Компания Nantero объявила о том, что ею ведется разработка нового типа памяти по технологии углеродных нанотрубок (carbon nanotube, CNT). Благодаря такому решению, заявляет производитель, компьютер будет загружаться практически мгновенно, потребляя при этом меньше электроэнергии и выделяя существенно меньше тепла.
Технологии CNT уделяется всё большее внимание со стороны ведущих производителей - компания Motorola работает над топливными элементами, изготовленными с её использованием, Fujitsu планирует охлаждать полупроводники при помощи нанотрубок, Infineon и Intel ведут разработки, в области задействующих нанотрубки транзисторов, жидкокристаллические дисплеи будущего также будут использовать CNT.
Nantero, впрочем, стала первой компанией, которая объявила о том, что выпустит готовую продукцию, произведенную с использованием CNT, которую можно будет купить уже в 2007 году. Президент компании, Грэг Шмергель (Greg Schmergel) сказал, что первым продуктом этой области будет память, объединяющая скорость SRAM со способностью сохранять данные при отключенном питании флэш-памяти. Жизненный цикл памяти такого типа будет многократно превышать то количество циклов записи/стирания, которое свойственно флэш-накопителям. Принцип работы такой памяти заключается в следующем: углеродные нанотрубки находятся в виде суспензии над электродами. Электрические заряды изменяют позицию нанотрубок в двух положениях, каждое из которых определяет значение бита информации, записанной в память. После отключения питания трубки останутся в заданном положении, удерживаемые на молекулярном уровне.
К сожалению, не было приведено точных данных о плотности и скоростных характеристиках чипов CNT-памяти, однако было заявлено о 2 млрд. циклов чтения/записи в секунду. При этом обещается полная совместимость с существующими материнскими платами.
Заметим, что непосредственно Nantero не имеет своего производства, а лишь намерена закупать нанотрубки у сторонних производителей, занимаясь только их упаковкой в чипы. В настоящий момент компания уже имеет рабочие образцы, проходящие испытания. Что же касается цены на принципиально новые модули памяти, то здесь Шмергель также воздержался от конкретики, сказав, что она будет немногим выше, чем на традиционные решения.
Mультиплексор — устройство, имеющее несколько сигнальных входов, один или более управляющих входов и один выход. Мультиплексор позволяет передать сигнал с одного из входов на выход; при этом выбор желаемого входа осуществляется подачей соответствующей комбинации управляющих сигналов.
Аналоговые[1] и цифровые[1][2][3] мультиплексоры значительно различаются по принципу работы. Первые электрически соединяют выбранный вход с выходом (при этом сопротивление между ними невелико — порядка единиц/десятков ом). Вторые же не образуют прямого электрического соединения между выбранным входом и выходом, а лишь «копируют» на выход логический уровень ('0' или '1') с выбранного входа. Аналоговые мультиплексоры иногда называют ключами[4] или коммутаторами[1].
Устройство, противоположное мультиплексору по своей функции, называется демультиплексором. В случае применения аналоговых мультиплексоров (с применением ключей на полевых транзисторах) не существует различия между мультиплексором и демультиплексором и такие устройства могут называтьсякоммутаторами
Дата добавления: 2016-05-30; просмотров: 3877;