СТРУКТУРНЫЙ СИНТЕЗ АВТОМАТА МИЛИ


 

Выполним структурный синтез микропрограммного автомата Мили, заданного своей таблицей переходов-выходов (табл. 27 или табл. 28). В качестве примера синтез будем выполнять по прямой таблице (табл. 27).

1. В исходном автомате количество состояний М=6, следовательно, число элементов памяти

m = ] log 2 M [ = ] log 2 6 [ = 3.

Пусть для синтеза используются JK триггеры.

2. Кодируем внутренние состояния автомата, используя для этого карту Карно (рис.57.) и по возможности метод соседнего кодирования. Рекомендуется самостоятельно закодировать состояние с помощью эвристического алгоритма.

 

3. Строим прямую структурную таблицу переходов-выходов автомата Мили (табл. 31). В данной таблице в столбцах k(am) и k(as) указывается код исходного состояния и состояния перехода соответственно. В столбце функций возбуждения ФВ указывается те значения функций возбуждения, которые на данном переходе обязательно равны 1. Остальные (т.е. равные 0 или принимающие неопределенные значения) не указываются. Это эквивалентно тому, что всем неопределенным значениям функций возбуждения приписывается значение 0, что в общем случае не дает минимальной функции, однако в реальных автоматах минимизация обычно не делается в виду ее неэффективности. Предлагается самостоятельно построить структурную таблицу переходов с указанием всех значений функций возбуждения (в том числе и неопределенных), выполнить минимизацию и сравнить результаты с приведенными ниже.

 

 

Табл. 31. Структурная таблица переходов-выходов автомата Мили.

 

 

Am K(am) as K(as) X Y ФВ
a1 a2 x1 y1y2 J2
    a4 x1 y3y4 J3
a2 a2 x3x2 y1y2 -
  a5 x3 y2y3 J1
    a6 x3x2 y4 J3
a3 a4 y3y4 K1
a4 a1 x2 y2 K3
    a3 x2 y1y4 J1
a5 a1 y2 K1K2
a6 a1 x4 - K2K3
    a2 x4 y1y2 K3

 

4. Для получения функций возбуждения поступаем следующим образом. Выражение для каждой функции получается в виде логической суммы произведений вида aiX, где ai - исходное состояние, X-условие перехода. Для упрощения полученных выражений выполняем все возможные операции склеивания и поглощения:

 

J1 = a2x3 + a4x2 K1 = a3 + a5

J2 = a1x1 K2 = a5 + a6x4

J3 = a1x1 + a2x3x2 K3 = a4x2 + a6x4 + a6x4 = a6 + a4x2

 

5. Для получения функций выходов поступаем аналогично:

y1 = a1x1 + a2x3x2 + a4x2 + a6x4

y2 = a1x1 + a2x3x2 + a2x3 + a4x2 + a5 + a6x4

y3 = a2x3 + a3 + a1x1

y4 = a1x1 + a2x3x2 + a3 + a4x2

 

6. Для построения функциональной схемы автомата по полученным выражениям необходимо либо заменить ai его значениями через Q1Q2Q3 либо получить сигнал, соответствующий ai. Обычно используют второй способ и для получения сигнала ai применяют так называемый дешифратор состояний, на вход которого поступают сигналы с выходов элементов памяти Q1Q2Q3. Кроме того, при построении схемы стараются выделить общие части, встречающиеся в функциях возбуждения или выходных сигналах. В этом случае окончательная система уравнений, по которым строится схема, будет иметь вид:

A = a2x3x2+J2 ; J1 = D + B ; y1 = A + B + E ;

B = a4x2 ; K1 = a3 + a5; y2 = A + D + C + a5 + E ;

C = a4x2 ; J2 = a1x1 ; y3 = D + F + a3 ;

D = a2x3 ; K2 = a5 + a6x4 ; y4 = a3 + B + J3;

E = a1x1 ; K3 = a6 + C ;

F = a1x1 J3 = F+a2x3x2

Функциональная схема автомата, построенная на основании полученных уравнений, представлена на рис. 58.

 


 

 




Дата добавления: 2020-06-09; просмотров: 558;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.