Скалярний, векторний і змішаний добуток векторів


Означення. Скалярним добутком двох ненульових векторів і називається число (скаляр), яке дорівнює добутку модулів цих векторів на косинус кута між ними. Якщо хоча б один із векторів дорівнює нулю, то кут між векторами не визначений і за означенням скалярний добуток дорівнює нулю.

Отже:

,

де j — кут між векторами. Використовуючи формулу проекції вектора, можна також записати:

.

Властивості скалярного добутку:

1. . 4. .

2. . 5. якщо і навпаки,

3. . якщо

.

Нехай вектори і задано за допомогою (2.6), тоді, використовуючи властивості скалярного добутку, умови маємо:

(3.4)

Отже,

З рівності (2.7) випливає, що:

1. Необхідною і достатньою умовою перпендикулярності векторів і є ах bх + ау bу + аz bz = 0.

2. Кут між двома векторами і можна знайти за формулою:

.

Означення. Векторним добутком вектора на вектор називається вектор , якщо:

1) довжина вектора , де j — кут між двома векторами;

2) вектор перпендикулярний до кожного з векторів і

Рис. 3.2

3) вектор спрямований так, що коли дивитися з його кінця на площину, в якій лежать вектори і , то поворот вектора до вектора відбувається на найменший кут проти годинникової стрілки.

Модуль векторного добутку двох неколінеарних векторів дорівнює площі паралелограма, побудованого на векторах як на сторонах.

Властивості векторного добутку:

1. , якщо і — колінеарні вектори.

2. .

3. .

4. .

Знайдемо векторні добутки одиничних векторів . З колінеарності векторів випливає: . З того, що одиничні вектори збігаються з напрямом осей прямокутної системи координат, маємо:

Знайдемо координати вектора , якщо , .

(3.5)

або

.

Означення. Мішаним добутком векторів називається число, яке дорівнює скалярному добутку вектора на векторний добуток векторів і , тобто .

Рис. 3.3

Розглянемо геометричний зміст змішаного добутку. Для цього побудуємо на векторах , вважаючи, що вони не лежать в одній площині, тобто не компланарні, паралелепіпед (рис. 2.9).

Знайдемо об’єм паралелепіпеда, побудованого на векторах (рис. 2.9). Площа основи його дорівнює модулю векторного добутку векторів . Висота дорівнює . Отже, остаточно маємо:

. (3.6)

З останнього випливає, що модуль мішаного добутку чисельно дорівнює об’єму паралелепіпеда, побудованого на векторах . З рівності (2.9) маємо умову компланарності трьох векторів .

.

Ураховуючи формули (2.7) і (2.8) знаходження скалярного і векторного добутків, маємо:

або

.

 

Властивості мішаного добутку:

1. .

2. .



Дата добавления: 2016-05-26; просмотров: 7858;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.009 сек.