Практическое задание N 2. 12


 

1. Построить траекторию движения точки без учета и с учетом сопротивления воздуха при начальных условиях: fi=450, V=1000, м/с, k=0. 01. Через равные интервалы времени выводить на графике вектор скорости и ускорения точки, умноженные на масштабные коэффициенты: KV=10; KA=1000. Построить траектории движения массива точек, моделирующих: а) фонтан, б) фейерверк.

2. Рассчитать процесс поражения воздушной цели, движущейся по траектории:

Xs = X1 - Vs*t; Ys = Y1;снарядом, летящим со скоростью Vc по траектории:

Xc = Vc*t*cos( fi ); Yc = Vc*t*sin( fi );В случае поражения цели в некоторый момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем :

 

Y Vs * 1   Vc fi X

sin( fi )= ( W*Z + Ö (1+Z2-W2) ) / (1+Z2);

cos( fi )= Ö (1-sin2 ( fi ));

 

где Z=X1/Y1; W=Vs/Vc;tp=Y1/(Vc*sin( fi ));

Условие поражения цели: Vc > Vs*sin(fi).

Зададим X1=3000, Y1=10000, Vc=2000, Vs=900;

 

 

Y Vc     fi * (Xs,Ys) X

3. Рассчитать процесс поражения неподвижной цели с координатами (Xs, Ys) снарядом, летящим по траектории: Xc= Vc*t*cos( fi ); Yc = Vc*t*sin( fi ) - 0. 5*g*t2;В случае поражения цели в момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем:

cos( fi )= Xs/L* Ö (W ± Ö (W2 - Z2 ) )/2 );

sin( fi )= Ö(1-cos2 ( fi ));

 

где L2= Xs2 + Ys2; W= 1-Ys*g/ Vc2;

Z=g*L/Vc2; tp= Xs/(Vc*cos( fi ));

Условие поражения цели: Vc2 > g*(L+Ys). Зададим Xs=15000, Ys=100, Vc=500,

 

Y * Vc (X0, H)   * (Xs, Ys ) X

4.Рассчитать процесс поражения неподвижной цели с координатами (Xs,0) бомбой, сброшенной с самолета и летящей по траектории: Xc = X0 +Vc*t; Yc = H - 0. 5*g*t2; В случае поражения цели в момент времени tp: Xs=Xc; Ys=Yc; Решая эти уравнения, получаем:

 

H = 0. 5*g*L2 / Vc2 + Ys; L = Xs - X0.

 

где H - высота на которой должен лететь

самолет, чтобы сбросить бомбу не долетая

до цели расстояния "L". tp=L/Vc;

Зададим X0=150; Xs=80000; Ys=500; Vc=850;

 

Примечание к п. п. 2-4: Выводить на экран координаты цели и снаряда.

 

 

Y V   r X  

Движение спутника вокруг планетыописывается в полярной системе координат уравнением:

 

r = p/(1 + e*cos(fi));

 

где r - расстояние от спутника до центра планеты,

fi - угловая координата,

p = (R0*V0/Rz)2/g - параметр эллипса,

e = p/R0-1- эксцентриситет эллипса,

|e|<1 - эллипс, |e|=1 - парабола, |e|>1 - гипербола.

R0- начальное расстояние от спутника до центра планеты,

Rz- радиус планеты, g - ускорение свободного падения при r=Rz,

V0- начальная скорость спутника при r=R0.

 



Дата добавления: 2016-06-29; просмотров: 1400;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.01 сек.