Принцип действия биполярного транзистора. Режимы работы
Общие сведения
Биполярным транзистором (БТ) называется трехэлектродный полупроводниковый прибор с двумя взаимодействующими р-n-переходами, предназначенный для усиления электрических колебаний по току, напряжению или мощности. Слово «биполярный» означает, что физические процессы в БТ определяются движением носителей заряда обоих знаков (электронов и дырок). Взаимодействие переходов обеспечивается тем, что они располагаются достаточно близко – на расстоянии, меньшем диффузионной длины. Два p-n-перехода образуются в результате чередования областей с разным типом электропроводности. В зависимости от порядка чередования различают БТ типа п-р-п (или со структурой n-p-n) и типа р-п-р (или со структурой р-n-р), условные изображения которых показаны на рис. 5.1.
Структура реального транзистора типа n-p-n изображена на рис. 5 2 В этой структуре существуют два перехода с неодинаковой площадью: площадь перехода n1-р меньше, чем у перехода n2-р. Кроме того, у большинства БТ одна из крайних областей (n1 с меньшей площадью) сечения легирована гораздо сильнее, чем другая крайняя область (n2). Поэтому БТ является асимметричным прибором. Асимметрия отражается и в названиях крайних областей: сильнолегированная область с меньшей площадью (n1) называется эмиттером, а область n2 – коллектором. Соответственно переход n1-р называют эмиттерным, а n2-p коллекторным. Средняя область (p) называется базовой (или базой). Контакты с областями БТ обозначены на рис. 5.2,а буквами: Э – эмиттер; Б –база; К– коллектор.
Рабочей (активной) частью БТ является область объема структуры, расположенная ниже эмиттерного перехода (но заштрихована на рис. 5.2,а). Остальные (заштрихованные) участки структуры являются пассивными («паразитными»), обусловленными конструктивно-технологическими причинами. На рис. 5.2,б показана идеализированная структура БТ без пассивных областей, т.е. только активная часть транзистора, изображенная для удобства описания горизонтально. Сильнолегированная эмиттерная область обозначена верхним индексом «+» (n+), а нижние индексы 1 и 2 опущены.
Основные свойства БТ определяются процессами в базовой области, которая обеспечивает взаимодействие эмиттерного и коллекторного переходов. Поэтому ширина базовой области должна быть малой (обычно меньше 1 мкм). Если распределение примеси в базе от эмиттера к коллектору однородное (равномерное), то в ней отсутствует электрическое поле и носители совершают в базе только диффузионное движение. В случае неравномерного распределения примеси (неоднородная база) в базе существует «внутреннее» электрическое поле, вызывающее появление дрейфового движения носителей: результирующее движение определяется как диффузией, так и дрейфом БТ с однородной базой называют бездрейфовыми, а с неоднородной базой – дрейфовыми.
Биполярный транзистор, являющийся трехполюсным прибором, можно использовать в трех схемах включения: с общей базой (ОБ), общим эмиттером (ОЭ) и общим коллектором (ОК). На рис. 5.3 показаны эти схемы включения для р-n-р-транзистора. Стрелки на условных изображениях БТ указывают (как и на рис. 5.1) направление прямого тока эмиттерного перехода. В обозначениях напряжений вторая буква индекса обозначает общий электрод для двух источников питания.
В общем случае возможно четыре варианта полярностей напряжения переходов, определяющих четыре режима работы транзистора. Они получили названия: нормальный активный режим, инверсный активный режим, режим насыщения (или режим двухсторонней инжекции) и режим отсечки.
В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение (напряжение эмиттер-база UЭБ), а на коллекторном переходе – обратное (напряжение коллектор-база UКБ). Этому режиму соответствуют полярности источников питания на рис. 5.5 и направления токов для p-n-p-транзистора. В случае n-p-n-транзистора полярности напряжения и направления токов изменяются на противоположные.
Этот режим работы (НАР) является основным и определяет назначение и название элементов транзистора. Эмиттерный переход осуществляет инжекцию носителей в узкую базовую область, которая обеспечивает практически без потерь перемещение инжектированных носителей до коллекторного перехода. Коллекторный переход не создает потенциального барьера для подошедших носителей, ставших неосновными носителями заряда в базовой области, и поэтому переводит эти носители в коллекторную область. «Собирательная» способность этого перехода и обусловила название «коллектор». Коллектор и эмиттер могут поменяться ролями, если на коллекторный переход подать прямое напряжение UКБ, а на эмиттерный – обратное UЭБ. Такой режим работы называется инверсным активным режимом (ИАР) В этом случае транзистор «работает» в обратном направлении: из коллектора идет инжекция дырок, которые проходят через базу и собираются эмиттерным переходом.
Режим работы, когда напряжения на эмиттерном и коллекторном переходах являются прямыми одновременно, называют режимом двухсторонней инжекции (РДИ) или менее удачно режимом насыщения (РН). В этом случае и эмиттер, и коллектор инжектируют носители заряда в базу навстречу друг другу, и одновременно каждый из переходов собирает носители, приходящие к нему от другого перехода.
Наконец, режим, когда на обоих переходах одновременно действуют обратные напряжения, называют режимом отсечки (РО), так как в этом случае через переходы протекают малые токи.
Наглядно связь режимов БТ с включением переходов показана на рис. 5.4. Следует подчеркнуть, что классификация режимов производится по комбинации напряжений переходов. В схеме включения с общей базой (ОБ) они равны напряжениям источников питания UЭБ и UКБ. В схеме включения с общим эмиттером (ОЭ) напряжение на эмиттерном переходе определяется напряжением первого источника (UЭБ = – UБЭ), а напряжение коллекторного перехода зависит от напряжений обоих источников и по общему правилу определения разности потенциалов. Так как UЭБ = – UБЭ, то UКБ = UКБ – UБЭ; при этом напряжение источников питания надо брать со своим знаком: положительным, если к электроду присоединен положительный полюс источника, и отрицательным – в другом случае. Всхеме включения с общим коллектором (ОК) напряжение на коллекторном переходе определяется одним источником: UКБ = – UБК. Напряжение на эмиттерном переходе зависит от обоих источников: UЭБ = UЭК + UКБ = = UЭК – UБК, при этом правило знаков прежнее.
Физические процессы в бездрейфовом биполярном транзисторе
Основные физические процессы в идеализированном БТ удобно рассматривать на примере схемы с общей базой (рис. 5.5), так как напряжения на переходах совпадают с напряжениями источников питания. Выбор p-n-p-транзистора связан с тем, что направление движения инжектируемых из эмиттера носителей (дырок) совпадает с направлением тока.
В нормальном активном режиме (НАР) на эмиттерном переходе действует прямое напряжение Uэб. Поэтому прямой ток перехода
IЭ = IЭp + IЭn +IЭрек (5.1)
где IЭp, IЭn – инжекционные токи дырок (из эмиттера в базу) и электронов (из базы в эмиттер), а IЭрек – составляющая тока, вызванная рекомбинацией в переходе тех дырок и электронов, энергия которых недостаточна для преодоления потенциального барьера (см. §3.5.1).
Относительный вклад этой составляющей в ток перехода IЭ в (5.1) тем заметнее, чем меньше инжекционные составляющие IЭp и IЭn. определяющие прямой ток в случае идеализированного р-n-перехода. Если вклад IЭрек незначителен, то вместо (5.1) можно записать
IЭ = IЭp + IЭn (5.2)
Полезным в сумме токов выражения (5.1) является только ток IЭp, так как он будет участвовать в создании тока коллекторного перехода. «Вредные» составляющие тока эмиттера IЭn и IЭрек протекают через вывод базы и являются составляющими тока базы, а не коллектора. Поэтому вредные компоненты IЭn, IЭрек должны быть уменьшены.
Эффективность работы змиттерного перехода учитывается коэффициентом инжекции эмиттера
(5.3)
который показывает, какую долю в полном токе эмиттера составляет полезный компонент. В случае пренебрежения током IЭрек
(5.4)
Коэффициент инжекции γЭ тем выше (ближе к единице), чем меньше отношение IЭn / IЭp. Величина IЭn / IЭp << 1, если концентрация акцепторов в эмиттерной области p-n-p-транзистора NaЭ на несколько порядков выше концентрации доноров NдБ в базе (NaЭ >> NдБ). Это условие обычно и выполняется в транзисторах.
Какова же судьба дырок, инжектированных в базу из эмиттера, определяющих полезный ток IЭp? Очевидно, что инжектированные дырки повышают концентрацию дырок в базе около границы с эмиттерным переходом, т.е. вызывают появление градиента концентрации дырок – неосновных носителей базы. Этот градиент обусловливает диффузионное движение дырок через базу к коллекторному переходу. Очевидно, что это движение должно сопровождаться рекомбинацией части потока дырок. Потерю дырок в базе можно учесть введением тока рекомбинации дырок Iб рек. Так что ток подходящих к коллекторному переходу дырок
(5.5)
Относительные потери на рекомбинацию в базе учитывают коэффициентом переноса æБ:
æБ (5.6)
Коэффициент переноса показывает, какая часть потока дырок, инжектированных из эмиттера в базу, подходит к коллекторному переходу. Значение æБ тем ближе к единице, чем меньшее число инжектированных дырок рекомбинирует с электронами – основными носителями базовой области. Ток IБрек одновременно характеризует одинаковую потерю количества дырок и электронов. Так как убыль электронов в базе вследствие рекомбинации в конце концов покрывается за счет прихода электронов через вывод базы из внешней цепи, то ток IБрек следует рассматривать как составляющую тока базы наряду с инжекционной составляющей IЭn.
Чтобы уменьшить потери на рекомбинацию, т.е. увеличить æБ, необходимо уменьшить концентрацию электронов в базе и ширину базовой области. Первое достигается снижением концентрации доноров NдБ. Это совпадает с требованием NaЭ >> NдБ, необходимым для увеличения коэффициента инжекции. Потери на рекомбинацию будут тем меньше, чем меньше отношение ширины базы Wб и диффузионной длины дырок в базовой области LpБ. Доказано, что имеется приближенное соотношение
æБ (5.7)
Например, при Wб/LpБ= 0.1 , æБ = 0.995, что очень мало отличается от предельного значения, равного единице.
Если при обратном напряжении в коллекторном переходе нет лавинного размножения проходящих через него носителей (см. § 3.5.3), то ток за коллекторным переходом с учетом (5.5)
IKp=I*Kp=IЭр – IБрек (5.8)
С учетом (5.6) и (5.3) получим
IKp= æБ IЭр= γЭ æБ IЭ =α IЭ (5.9)
где
α = γЭ æБ = IKp/IЭ (5.10)
Это отношение дырочной составляющей коллекторного тока к полному току эмиттера называют статическим коэффициентом передачи тока эмиттера.
Ток коллектора имеет еще составляющую IКБ0. которая протекает в цепи коллектор-база при IЭ = 0 (холостой ход, «обрыв» цепи эмиттера), и не зависит от тока эмиттера. Это обратный ток перехода, создаваемый неосновными носителями областей базы и коллектора, как в обычном р-n-переходе (диоде).
Таким образом, полный ток коллектора с учетом (5.8) и (5.10)
IK = IKp + IКБ0 = α IЭ + IКБ0 (5.11)
Из (5.11) получим обычно используемое выражение для статического коэффициента передачи тока:
α =(IK – IКБ0)/IЭ (5.12)
числитель которого (IК – IКБ0) представляет собой управляемую (зависимую от тока эмиттера) часть тока коллектора, IKp. Обычно рабочие токи коллектора IK значительно больше IКБ0. поэтому
α ≈ IK/IЭ (5.13)
С помощью рис. 5.5 можно представить ток базы через компоненты:
IБ = IЭ n + IЭ рек + IБ рек – IКБ0 (5.14)
По первому закону Кирхгофа для общей точки
IЭ = IK + IБ (5.15)
Как следует из предыдущего рассмотрения, IK и IБ принципиально меньше тока IЭ; при этом наименьшим является ток базы
IБ = IЭ – IK (5.16)
Используя (5.16) и (5.11), получаем связь тока базы с током эмиттера
IБ = (1–α)IЭ –IКБ0 (5.17)
Если в цепи эмиттера нет тока (IЭ = 0, холостой ход), то IБ = – IКБ0. т.е. ток базы отрицателен и по величине равен обратному току коллекторного перехода. По значению I′Э = IКБ0 /(1–α) ток IБ = 0, а при дальнейшем увеличении IЭ (IЭ > I′Э) ток базы оказывается положительным.
Подобно (5.11) можно установить связь IK с IБ. Используя (5.11) и (5.15), получаем
(5.18)
где
(5.19)
– статический коэффициент передачи тока базы. Так как значение α обычно близко к единице, то β может быть очень большим (β >> 1). Например, при α = 0.99, β = 99. Из (5.18) можно получить соотношение
β = (IK – IКБ0) / (IБ + IКБ0) (5.20)
Очевидно, что коэффициент β есть отношение управляемой (изменяемой) части коллекторного тока (IK – IКБ0) к управляемой части базового тока (IБ + IКБ0). Действительно, используя (5.14), получаем
IБ + IКБ0 = IЭ n + IЭ р + IБ рек
Все составляющие последнего выражения зависят от IЭ и обращаются в нуль при IЭ =0. Введя обозначение
IКЭ0 = IКБ0/(1– α)=( β+1) IКБ0 (5.21)
можно вместо (5.18) записать
(5.22)
Отсюда очевиден смысл введенного обозначения IКЭ0: это значение тока коллектора при нулевом токе базы (IБ = 0) или при «обрыве» базы. При IБ = 0 IK = IЭ, поэтому ток IКЭ0 проходит через все области транзистора и является «сквозным» током, что и отражается индексами «К» и «Э» (индекс «0» указывает на условие IБ = 0).
Эффект Эрли
В реальном БТ изменение напряжений на переходах UЭБ и UКБ вызывает изменение толщины обедненных слоев перехода и смещение границ базовой области, т.е. изменение ширины базовой области. Это явление называют эффектом Эрли. Особеннозаметноизменение ширины базы при подаче обратных напряжений на переходы. В нормальном активном режиме, когда на эмиттерном переходе прямое напряжение, а на коллекторном обратное и сравнительно большое по величине, толщина коллекторного перехода значительно больше, чем эмиттерного, и влиянием смещения границы эмиттерного перехода можно пренебречь. Поэтому увеличение (по модулю) обратного напряжения UКБ будет приводить к расширению коллекторного перехода и сужению базовой области.
К каким же последствиям может привести эффект Эрли? Для определенности рассмотрим увеличение обратного напряжения UКБ, приводящее к уменьшению ширины базовой области WБ.
1. Уменьшение WБ вызовет рост градиента концентрации неосновных носителей в базе и, следовательно, рост тока эмиттера. На рис. 5.7 увеличение модуля |UКБ| от |UКБ1| до |UКБ1| при постоянном (заданном) напряжении UЭБ соответствует переходу от распределения 1 к распределению 2. Так как θЭ2 > θЭ1 (увеличение градиента), то IЭ2 > IЭ1.
2. В ряде случаев при изменении UКБ требуется сохранить ток эмиттера. Чтобы вернуть IЭ от значения IЭ2 к значению IЭ1, необходимо уменьшить напряжение на эмиттерном переходе до значения, при котором градиент вернется к исходному значению (θЭ3 = θЭ1), а распределение изобразится прямой 3 (A'C), параллельной прямой АБ.
3. Уменьшение WБ приведет также к росту коэффициента переноса æБ в базе. В случае поддержания постоянства тока эмиттера это будет сопровождаться уменьшением тока базы IБ. Однако можно доказать, что IБ также уменьшится, но в меньшей мере, если IЭ не возвратится к исходному значению.
4. Увеличение коэффициента переноса при уменьшении WБ означает некоторый рост статических коэффициентов передачи α и β.
5. Рост α и IЭ при уменьшении WБ приведет к увеличению коллекторного тока (5.11): IК = α IЭ + IКБО. Так как α ≈ 1 и его рост относительно мал, даже если он достигнет предельного значения (α = 1), то основное влияние окажет рост IЭ.
6. В ряде случаев требуется при уменьшении ширины базы из-за эффекта Эрли сохранять неизменным ток базы. Для компенсации произошедшего уменьшения IБ необходимо дополнительно увеличить IЭ (т.е. общий поток инжектированных в базу носителей) в соответствии с формулой (5.17):
IБ = (1–α)IЭ –IКБ0
Дата добавления: 2016-06-29; просмотров: 2319;