ДРУГИЕ МЕТАБОЛИЧЕСКИЕ ПРЕВРАЩЕНИЯ
Выше рассмотрены различные типы метаболических превращений чужеродных соединений, которые под влиянием ферментных систем происходят в организмах людей и животных. Кроме указанных типов превращений имеются и другие, механизм которых не выяснен или выяснен недостаточно. К ним относятся процессы восстановления дисульфидов, гидроксамовых кислот, разрыв кольца в циклических соединениях, образование кольца (циклизация) и др.
РЕАКЦИИ КОНЪЮГАЦИИ
Во второй фазе метаболизма происходит конъюгация метаболитов с некоторыми веществами, находящимися в организме. Реакции конъюгации являются реакциями биосинтеза. Известны чужеродные соединения, которые, минуя первую стадию биотрансформации (не превращаясь в метаболиты), вступают в реакции конъюгации. Способность чужеродных соединений и метаболитов вступать в реакции конъюгации зависит от наличия в их молекулах определенных функциональных групп.
В результате реакций конъюгации в организме образуются конъюгаты, которые являются более полярными, лучше растворимыми в воде и менее токсичными, чем чужеродные соединения. Поэтому в результате процессов конъюгации происходит понижение токсичности чужеродных соединений (лекарственных препаратов и ядов) и увеличение скорости выделения их из организма. Таким образом, реакции конъюгации являются реакциями детоксикации.
В организме метаболиты и некоторые чужеродные соединения под влиянием соответствующих ферментов могут образовывать конъюгаты с глюкуроновой кислотой, аминокислотами (глицином, цистеином и др.), ацетатами, сульфатами и рядом других веществ.
Активность некоторых ферментов зависит только от их состава и структуры. Однако имеется ряд ферментов, активность которых зависит от наличия определенных групп (или молекул) небелковой природы, которые называются кофакторами. В роли кофакторов могут выступать сложные органические вещества, которые называются коферментами, или ионы металлов.
Коферменты — это низкомолекулярные органические соединения (в большинстве случаев — производные витаминов), обусловливающие активность ферментов. Коферменты с белковой частью ферментов образуют легко диссоциирующие комплексы.
Коферменты выполняют роль переносчиков (доноров или акцепторов) групп атомов, атомов водорода и электронов. В процессе метаболизма коферменты удаляют из субстрата (чужеродных соединений или метаболитов) или присоединяют к нему определенные группы атомов.
β некоторых случаях для проявления каталитической активности ферментов требуется присутствие как коферментов, так и ионов металлов.
При конъюгации в качестве коферментов (переносчиков групп атомов) могут быть УДФ-глюкуроновая кислота (уридиндифосфатглюкуроновая кислота), S-аденозилметионин, ацетилКоА (КоА-пантетеинадеииниуклеотиддифосфат) и др.
Конъюгация с глюкуроновой кислотой. Глюкуроновая кислота С 6 Н 10 О 7 относится к уроновым кислотам (продуктам окисления альдоз). Она представляет собой альдегидкарбоновую кислоту. При образовании уроновых кислот (в том числе и глюкуроновой) первичная спиртовая группа альдоз окисляется до карбоксильной группы, а альдегидная — остается неизменной. Образование глюкуроновой кислоты из глюкозы происходит по схеме
Глюкозу и глюкуроновую кислоту в форме пираноз можно представить такими формулами:
Уроновые кислоты (глюкуроновая, маннуроновая, галактуроновая) являются компонентами многих полисахаридов, олигосахаридов и др. В организме свободная глюкуроновая кислота образуется при ферментативном гидролизе УДФ-глюкуроновой кислоты, некоторых глюкопротеидов и других веществ.
Глюкуроновая кислота со спиртами, фенолами, карбоновыми кислотами, тиолами, аминами и некоторыми другими веществами образует конъюгаты. Продукты взаимодействия глюкуроновой кислоты с указанными выше веществами называются глю-куронидами. Образование глюкуронидов происходит главным образом в печени. Они также образуются в почках, коже, пищевом канале и др.
Характерной особенностью глюкуронидов является то, что карбоксильная группа в их молекулах остается свободной. Поэтому в плазме и моче глюкурониды почти полностью ионизированы по карбоксильной группе.
При образовании глюкуронидов переносчиком (кофермен-том) остатка глюкуроновой кислоты является УДФ-глюкуроно-вая кислота. Процесс образования глюкуронидов происходит при помощи фермента глюкуронилтрансферазы. Под влиянием указанного фермента глюкуроновая кислота с фенолами и спиртами образует О-глюкурониды:
Бензойная и глюкуроновая кислоты в организме образуют бензоилглюкуронид, являющийся сложным эфиром:
где С 6 Н 9 О 6 — остаток глюкуроновой кислоты.
Глюкуроновая кислота с рядом азотсодержащих соединений (аминами, амидами, производными карбаминовых кислот, азотсодержащими гетероциклами и др.) образует N-глюкурониды. Образование из них можно представить следующими схемами:
Тиофенолы и ряд других органических соединений, содержащих атомы серы, с глюкуроновой кислотой образуют S-глюкуро-ниды:
Глюкурониды под влиянием фермента β-глюкуронидазы могут подвергаться гидролизу с образованием глюкуроновой кислоты и соответствующего вещества, ранее вступившего в реакцию конъюгации с этой кислотой.
Метилирование.В организме метилированию могут подвергаться амины, фенолы и тиолы. В результате метилирования образуются соответствующие N-, О- и S-метильные конъюгаты. При метилировании чужеродных соединений и некоторых метаболитов переносчиком метильных групп является кофермент S-аденозилметионин. С участием метильных групп этого кофермента происходит метилирование перечисленных выше соединений. Реакции метилирования происходят под влиянием ферментных систем (метилтрансфераз).
Η-метилирование. При N-метилировании метильная группа S-аденозилметионина под влиянием N-метилтрансферазы присоединяется к атомам азота метаболитов или чужеродных соединений. Продукты N-метилирования норадреналина, серотонина, нормеперидина и пиридина приводятся ниже:
О-Метилирование. Этому типу конъюгации подвергаются соединения, содержащие фенольные группы. Под влиянием ферментов (О-метилтрансфераз) метильная группа кофермента S-аденозилметионина присоединяется к атомам кислорода фенольных гидроксилов. Для реакции метилирования фенолов кроме кофермента требуется присутствие ионов магния или ионов других двухвалентных металлов.
Ниже приводятся формулы продуктов метилирования фенолов на примере пирогаллола и галловой кислоты:
Соединения, содержащие одну фенольную группу, при наличии указанных ферментов не метилируются.
S- метилирование. Некоторые чужеродные соединения, содержащие тиоловые группы (-SH), в организме подвергаются метилированию. При этом метильная группа кофермента S-аденозилметионина в присутствии ферментов (метилтрансфераз) переносится к атомам серы метаболитов или чужеродных соединений с образованием соответствующих S-метилпроизводных этих соединений.
Ацетилирование.Процесс ацетилирования является основным путем метаболизма ароматических аминов, сульфаниламидов и некоторых чужеродных аминокислот. При ацетилировании происходит присоединение ацетильной группы к молекулам чужеродных соединений или метаболитов. Источником ацетильных групп, реагирующих с чужеродными соединениями или метаболитами, является кофермент ацетил-КоА. Под влиянием фермента ацетилтрансферазы происходит перенос ацетильной группы от ацетил-КоА к соответствующим аминам, сульфамидам и аминокислотам, подвергающимся конъюгации, и освобождается КоА.
Ниже приводятся продукты ацетилирования (конъюгаты) анилина и стрептоцида
Конъюгация с глицином.Ароматические карбоновые кислоты, замещенные бензойной кислоты и гетероциклические карбоновые кислоты с глицином (гликоколем) H 2 N — СН 2 СООН и другими α-аминокислотами, образуют конъюгаты. Глициновые конъюгаты бензойной, салициловой, никотиновой и других кислот встречаются под названием гипуровые кислоты. Ниже приведены продукты конъюгации карбоновых кислот с глицином:
Алифатические карбоновые кислоты с глицином не образуют конъюгатов.
В качестве конъюгирующего агента иногда является цистеин, представляющий собой α-аминокислоту.
Конъюгация с глютатионом. Глютатион — сложный природный трипептид (глютаминал-цистеинил-глицин); с бензолом, нафталином и антраценом образует конъюгаты (меркаптуровые кислоты). Образование конъюгатов с глютатионом катализирует фермент глютатион-S-арилтрансфераза.
Конъюгация с сульфатами. Фенолы и спирты в организме конъюгируются с сульфатами. При этом образуются конъюгаты, представляющие собой эфиры этих веществ. В организме источником сульфатов, вступающих в реакции конъюгации, является З-фосфоаденозин-5-фосфосульфат. Реакция образования конъюгатов спиртов и фенолов катализуется ферментом сульфотрансферазой.
Конъюгаты фенолов с сульфатами представляют собой сложные эфиры — арилсульфаты:
При конъюгации первичных алифатических спиртов с сульфатами образуются сложные эфиры — алкилсульфаты:
Двойная конъюгация. Некоторые чужеродные соединения и метаболиты имеют две и больше функциональных групп, с помощью которых они могут вступать в реакции конъюгации. Большинство таких соединений вступает в реакции конъюгации по одной функциональной группе. Однако некоторые чужеродные соединения и метаболиты образуют двойные конъюгаты за счет присоединения к их молекулам двух различных соединений или групп атомов. Так, известны чужеродные соединения, одновременно образующие конъюгаты с глюкуроновой кислотой и глютатионом или с глюкуроновой кислотой и сульфатами.
Однако в ряде случаев чужеродные вещества метаболизируются несколькими путями. Сложные эфиры гидролизуются с образованием кислот и спиртов. Спирты, в свою очередь, могут окисляться до кислот, которые вступают в реакции конъюгации с глицином. Сульфаниламиды могут метаболизироваться путем окисления их и путем конъюгации с ацетатами. Нитросоединения восстанавливаются до аминов, которые затем ацетилируются, и т. д.
Скорость процессов метаболизма различных чужеродных соединений неодинакова. Процесс метаболизма некоторых чужеродных соединений не доходит до конца. Поэтому одни чужеродные соединения частично выделяются из организма в неизмененном виде, а другие — в виде смеси, состоящей из чужеродных соединений, метаболитов и конъюгатов.
Выше на примере некоторых чужеродных соединений приведены основные типы процессов метаболизма. Метаболизм отдельных токсикологически важных веществ приведен в последующих главах книги при описании свойств, токсичности и методов анализа этих соединений.
Дата добавления: 2016-06-29; просмотров: 1993;