Теплопроводность через однослойную цилиндрическую стенку


Внешняя и внутренняя поверхности прямой цилиндрической трубы поддерживаются при постоянных температурах t'ст и t''ст. Изотермические поверхности будут цилиндрическими поверхностя­ми, имеющими общую ось с трубой. Температура будет меняться только в направлении радиуса, благодаря этому и поток тепла будет тоже радиальным. Труба имеет бесконечную длину. Температурное поле в этом случае будет одномерным

где r — текущая цилиндрическая координата.

В случае неравномерного распределения температур на поверх­ностях трубы температурное поле не будет одномерным и последнее уравнение не будет действительным.

На рис. 23-3 изображена труба, в которой тепловой поток направ­лен по радиальным направлениям. Возьмем участок трубы длиной l.

Тепловой поток для каждого слоя

Решая эти уравнения относительно разности температур и скла­дывая, получаем

откуда

 

(23-8)

или для любого числа слоев

(23-9)

Отношение называют термическим сопротивлением слоя, а

величину —полным термическим сопротивлением многослойной плоской стенки.

Иногда многослойную плоскую стенку рассчитывают как одно­родную, вводя в уравнение (23-9) эквивалентный коэффициент теп­лопроводности λэк:

(23-10)

Сравнивая уравнения (23-9) и (23-10), получаем

(23-11)

Эквивалентный коэффициент теплопроводности многослойной стенки равен коэффициенту теплопроводности однородной стенки той же толщины, с теми же температурами поверхностей и про­пускающей тот же тепловой поток.

Величина λэк зависит от термических сопротивлений и толщин отдельных слоев.

Температуры в ◦С между отдельными слоями сложной стенки будут равны

(23-12)

Температура в каждом слое стенки при постоянном коэффициен­те теплопроводности изменяется по линейному закону, а для много­слойной плоской стенки температурный график представляет собой ломаную линию.

Поверхность F на расстоянии г от оси будет равна 2лrl. Темпера­тура внутренней поверхности равна t'ст, наружной — t''ст. Через поверхности проходит один и тот же тепловой поток.

Выделим внутри стенки кольцевой слой радиусом г и толщиной dr. Тогда можно принять поверхности, через которые проходит тепловой поток, одинаковыми и рассматривать этот элементарный слой как плоскую стенку. Разность температур между поверхностя­ми будет также бесконечно малой и рав­ной dt. По закону Фурье или для кольцевого слоя

Разделяя переменные, получаем

 

(а)

Интегрируя уравнение (а) в пределах от t'ст До t''ст и от r1 до r2 и при К — const, получаем

откуда (23-13)

Как видно из уравнения, распределение температур в стенке цилиндрической трубы представляет собой логарифмическую кри­вую. Тепловой поток, проходящий через цилиндрическую стенку, определяется заданными граничными условиями и зависит от отно­шения наружного диаметра к внутреннему.

Тепловой поток может быть отнесен к единице длины трубы и к 1 м2 внутренней или внешней поверхности. Тогда расчетные фор­мулы принимают вид

 



Дата добавления: 2016-06-29; просмотров: 2599;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.