Термические процессы переработки нефти и нефтяных фракций


Фракционная перегонка нефти.Сырая нефть после из­влечения ее из недр специальными приемами очищается от растворенного в ней газа, воды, минеральных солей и различных механических примесей в виде песка и глины. Практически вся нефть подвергается перегонке на фракции. Фракционная перегонка основана на разнице в температуре кипения отдельных фракций углеводоро­дов, близких по физическим свойствам. Принципиальная схема перегонки нефти на атмосферно-вакуумных уста­новках (АВУ) показана на рис. 5.12. Нефть, нагретая то­почными газами в печи 1 до температуры кипения (~ 350 °С) поступает в среднюю часть ректификационной колонны 2, работающей под атмосферным давлением. Низкокипящие фракции превращаются в пар и устре­мляются вверх, а высококипящий мазут стекает вниз ко­лонны. Внутри колонны установлены тарелки - перфори­рованные листы с отверстиями для прохода пара и жидкости. На тарелках в результате противоточного движения фаз образуется пенный слой. В таком слое высококипящие углеводороды охлаждаются, конденсируют­ся и остаются в жидкости, в то время как растворенные в жидкости низкокипящие углеводороды, нагреваясь, переходят в пар. Пары поднимаются на верхнюю тарел­ку, а жидкость перетекает на нижнюю. Там процесс кон­денсации и испарения снова повторяется. Современные колонны диаметром до 6 м и высотой до 50 м имеют до 80 тарелок и перерабатывают до 12 млн. т нефти в год. Достигаемая при этом степень разделения обеспечивает

 

выход бензина ~ 14,5 % при температуре отбора до 170 °С, лигроина -7,5% (160 -200 °С), керосина-18% (200- 300 °С) и солярового масла 5% (300- 350 °С). Оста­ток (55 % от массы нефти) составляет мазут, который со­бирается в нижней части ректификационной колонны 2. При содержании в ней серы более 1% мазут использует­ся как котельное топливо, и на этом перегонку прекра­щают. При меньшем содержании серы мазут либо разго­няют на масляные компоненты, либо подвергают крекин­гу для получения дополнительных количеств бензина, керосино-соляровой фракции и ценных углеводородных газов.

При необходимости получения из мазута смазочных масел его подвергают дальнейшей перегонке под вакуу­мом. Для этого подогретый до кипения в печи 3 мазут подается на разгонку в ректификационную колонну 4, на­ходящуюся под разрежением 0,08 — 0,09 МПа. В результа­те образуется до 30% гудрона и смазочных масел: 10—12% веретенного, 5% машинного, 3% легкого и 7% тяжелого цилиндрового.

Улучшение технико-экономических показателей ра­боты атмосферно-вакуумных установок достигается: 1) утилизацией теплоты отходящих продуктов (для этого нефть перед подачей в печь 1 предварительно подогре­вают до 170-175 °С в теплообменниках 5 теплом про­дуктов перегонки; последние при этом охлаждаются, что экономит не только тепловую энергию, но и воду на ох­лаждение в холодильниках 6); 2) использованием вакуума на второй стадии перегонки удается предотвратить тер­мическое разложение тяжелых углеводородов и снизить температуру кипения мазута, а значит, и расход топлива на его нагревание. Кроме того, вакуум увеличивает ско­рость парообразования и конденсации, что значительно интенсифицирует процесс.

Однако подобная первичная переработка нефти дает лишь грубые фракции сравнительно невысокого выхода и низкого качества. Поэтому большинство из этих фрак­ций подвергают дополнительной вторичной термической переработке. Особенность такой переработки заключает­ся в том, что наряду с температурой, являющейся ре­шающим фактором процесса, вспомогательную роль для уменьшения образования нежелательных побочных про­дуктов играют давление и время пребывания нефтяных фракций в высокотемпературной зоне. Пример тому — термический крекинг.

Термический крекинг мазута. Коксование мазута для уменьшения образования кокса ведут в две стадии. Вна­чале при 450 —470 °С и давлении 2,5 МПа получают бен­зин и среднекипящую фракцию. Для замедления по­бочных реакций ароматизации углеводородов с образо­ванием кокса выход бензина доводят всего лишь до 10%. На второй стадии увеличивают давление до 4,5 МПа и при 500 —520 °С из среднекипящей фракции за счет более глубокого расщепления получают до 30 — 35 % бензина. Наряду с бензином получается до 55 % крекинг-остатка и до 10—15% газов.

Водород, метан, этан, пропан, бутан, этилен, пропилен и бутилен, содержащиеся в газовой смеси, после разделе­ния используются для синтеза полимеров, различных ор­ганических соединений, качественного бензина либо вы­сокооктановых добавок к нему. Крекинг-остаток может быть направлен на коксование для получения дополни­тельных количеств моторного топлива либо использован как местное топливо для сжигания в котельных. При не­обходимости получения из нефтяных фракций газов и жидких ароматических углеводородов применяют пи­ролиз.

Пиролиз нефтяных фракций происходит в паровой фа­зе при атмосферном давлении и повышенной до 670 — 720 °С температуре. В результате глубокого расще­пления и вторичных реакций синтеза из керосина или легкого газойля получают до 50% газа, ароматические углеводороды и смолу.

Газы пиролиза отличаются от газов крекинга по­вышенным содержанием этилена, пропилена, бута­диена — исходного сырья для получения продуктов основного и тонкого органического синтезов (эти­лового и метилового спирта, уксусной кислоты, кра­сителей, лекарств) и особенно для получения синтетиче­ских волокон, пластмасс, каучуков.

По сравнению с термическим крекингом, где сырье и конечные продукты находятся в основном в жидком виде, при пиролизе парообразное состояние нефтяных фракций ухудшает условия передачи теплоты в трубчатой печи от внутренних стенок парам, приводит к увеличе­нию длины труб в печи, большому расходу теплоты на нагревание, росту материалоемкости основного оборудо­вания.

В настоящее время термические методы переработки нефтяных фракций быстро вытесняются менее энергоемкими и более эффективными каталитическими процесса­ми, осуществляемыми под значительно меньшим давле­нием.

Высокотемпературная переработка углеводородных газов

Известно, что все углеводородные газы можно раз­бить на три группы: 1) природные газы, образующие самостоятельные месторождения, состоящие на 90% из метана; 2) попутные, сопровождающие добываемую нефть и содержащие метан, этан, пропан и бутан; 3) нефтегазы, образующиеся в результате различных процес­сов деструктивной переработки нефти: крекинга, пироли­за, риформинга, коксования, гидрокрекинга и т. д., содержащие до 6% водорода, метан, этан, пропан, бутан, а также непредельные углеводороды (этилен, пропилен, бутилен), составляющие до 40% от общего количества газов нефтепереработки. Все эти газы служат ценным то­пливом и богатым источником сырья ддя производства органических веществ, в том числе полимеров, лаков, красок, лекарственных веществ и т. д.

После очистки, осушки, разделения на компоненты абсорбцией, ректификацией, адсорбцией и хроматогра­фией непредельные углеводороды идут на производство полимеров и другой продукции. На основе парафиновых и ароматических углеводородов производится каталити­ческое алкилирование олефинами, например, с целью по­лучения высококачественных бензинов. Парафиновые углеводороды (метан, этан, пропан, бутан и др.) подвер­гаются разложению на различные углеводороды и водо­род при высокой температуре.

Как известно, термическая устойчивость простейших парафинов очень велика, например метан при температу­ре ниже 700 —800 °С практически не разлагается. По мере увеличения молекулярной массы термическая устойчи­вость парафинов растет. Академик Н. Н. Семенов убеди­тельно показал, что при данной температуре имеется практически прямая зависимость между числом углево­дородных атомов в молекуле и константой скорости кре­кинга углеводорода.

Термическая обработка метана, этана, бутана прово­дится при 1000 °С для получения непредельных углеводо­родов и водорода. Например, при крекинге метана обра­зуется ацетилен и водород:

2СН4àС2Н2+3H2

Пиролиз предельных углеводородов имеет несколько разновидностей: термический, термоокислительный, плазменный крекинг, электрокрекинг. Все эти производ­ства связаны с высокими энергозатратами, но наиболее перспективными являются термоокислительный и плаз­менный методы. Пиролиз метана в настоящее время — весьма важный способ получения водорода и ацетилена. Кроме этого, метан используют для производства ам­миака, альдегидов, кислот и других веществ. Подвергая метан конверсии парами воды при 800— 1000 °С в присут- ! ствии катализаторов, получают оксид и диоксид угле­рода, водород. Водород используют главным образом для производства аммиака

СН4 + Н2О à СО + ЗН2 - Q

CO + H2O àCO2 + H2 + Q

Конверсия метана при недостатке водяного пара и ча­стичное окисление метана дают синтез-газ СО 4- 2Н2, ко­торый используется в качестве сырья дня получения ме­тилового спирта. Частичное окисление метана при 1300—1500°С и небольшом давлении приводит к получе­нию оксида углерода и водорода

2СН4 + О2 à 2СО + 4Н2

Чрезвычайно перспективным в настоящее время является процесс прямого окисления метана в метанол и формальдегид при 440 °С в присутствии катализаторов

ЗСН4 + ЗО2 à СН3ОН+CH2O+CO+3H2O

при этом метанола СН3ОН получают 71%, формальде­гида СН2О-14%.

В последние годы разрабатывают новые термические методы переработки метана, например, для получения цианистого водорода

10000C


кат
СН4 + NH3 + l,5O2 HCN + ЗН2О

 

и сероуглерода

СН4+2S2 à CS2+2H2S

Дегидрирование бутана, пентана и других углеводородов для получения олефинов ведут при высокой температуре и в присутствии катализатора.



Дата добавления: 2016-06-22; просмотров: 4671;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.