Трансмутация ядер атомов


Альфа – распад

Человечество израсходовало самые большие финансовые ресурсы для изучения ядер атомов. Это дало, как положительный результат – атомную энергию, так и отрицательный – ядерное оружие. Приходит пора, когда все усилия надо направить на получение знаний о ядрах атомов, которые дают только пользу человечеству. Предпосылки для этого уже созданы в новой теории микромира.

Тщательный анализ спектра атома водорода и других атомов и ионов позволил найти закон формирования их спектров, из которого однозначно следовало линейное взаимодействие электронов с протонами ядер атомов. Постепенное накопление новой информации о спектрах атомов и ионов, позволило сформулировать ряд гипотез о структуре ядра.

Линейное взаимодействие электрона с ядром атома возможно только при расположении протона на поверхности ядра. Из этого следует, что протон имеет две связи: одну с электроном, а другую - с нейтроном ядра атома. Связь протона с нейтроном уже давно названа ядерной, а силы, реализующие её, – ядерными силами. Физическая природа этих сил до сих пор не установлена. Поэтому возникла необходимость найти её. Было обращено внимание на очень большую напряженность магнитного поля в центре симметрии электрона, равную . У протона она оказалась значительно больше – . Поскольку напряжённость магнитного поля убывает от центра его симметрии в кубической зависимости, то появились основания для формулировки гипотезы: ядерные силы имеют магнитную природу.

Далее, из экспериментальной информации о ядрах следует, что с увеличением количества протонов и нейтронов в ядрах доля лишних нейтронов увеличивается. Это означает, что нейтрон имеет в ядре больше связей, чем протон. Для проверки этого предположения была сформулирована гипотеза: нейтрон имеет шесть связей. Вполне естественно, что в условиях отсутствия детальной информации о структуре протона и нейтрона пришлось считать их для начала сферическими, с равными радиусами сфер (рис. 74). Последующая проверка перечисленных гипотез путём построения моделей ядер дала такое обилие информации, совпадающей с экспериментальными данными ядерной физики, что указанные гипотезы уверенно заняли пьедестал постулатов.

Рис. 81: a), b), c) - схемы ядер атома гелия – альфа-частицы (светлые - протоны, серые – нейтроны);

d), e), f) - схемы ядер атома неона (серые и тёмные - нейтроны);

g), h), j) - схемы ядер aтома кислорода

 

Правила формирования моделей ядер автоматически следовали из экспериментальной информации о них. Эти правила позволили в течение нескольких дней построить ядра первых 29 химических элементов.

Случилось это в начале ХХI века. С тех пор автор не пытался построить модели более сложных ядер, считая, что этого достаточно, чтобы другие продолжили эту работу. Конечно, наличие финансирования экспериментальных исследований, связанных с ядрами, стимулировало бы этот процесс, но его нет, поэтому рассмотрим давно известные ядерные процессы: альфа и бета распады. Начнём с альфа – распада (рис. 81).

Известно, что радиоактивные ядра испускают альфа – частицы – ядра атомов гелия (рис. 81, b и c), состоящие из двух нейтронов и двух протонов. Изотопы гелия могут иметь ядра с одним (рис. 81, с), тремя и даже большим количеством нейтронов. Ядро, имеющее два нейтрона и два протона, является стабильным. Известно также, что магнитный момент атома гелия может быть равен нулю. Такие атомы имеют структуру ядра, показанную на рис. 81, с.

Ближайшим химическим элементом, входящим в восьмую группу вместе с гелием, является неон. Схемы моделей его ядер показаны на рис. 81, d, e, f. Как видно, они содержат ядра атома гелия, что полностью соответствует периодической таблице Д.И. Менделеева.

Эксперименты показывают, что альфа – распад приводит к рождению химических элементов сдвинутых влево в таблице химических элементов. Если бы неон был радиоактивен и испускал бы альфа - частицы (рис. 81), то его ядра превращались бы в ядра атома кислорода (рис. 81, g, h, j), подтверждая указанный экспериментальный факт.

Поскольку ядра радиоактивных элементов, таких как уран, ещё не построены, то мы используем для анализа процесса альфа – распада ядра более простых химических элементов, например, неона (рис. 81, d, e, f).

Прежде всего, напомним, что синтез атома – это процесс ступенчатого сближения электронов с протонами ядра и излучение электронами фотонов с длиной волны от реликтового диапазона до начала рентгеновского диапазона. Процесс же поглощения фотонов электронами атомов возвращает электроны на более высокие энергетические уровни, где энергии связи их с протонами ядер могут стать равными нулю, и они окажутся свободными. Состояние, при котором электроны атома излучают или поглощают фотоны названо возбуждённым. Когда эти процессы заканчиваются и электроны опускаются на самые нижние (близкие к протонам ядер) энергетические уровни, атом переходит в невозбуждённое состояние.

Аналогично идут процессы синтеза и радиоактивного распада ядер атомов. Процесс синтеза ядер сопровождается ступенчатым сближением протонов с нейтронами и излучением гамма фотонов и фотонов дальней рентгеновской зоны. Процесс излучения заканчивается при максимальном сближении протонов с нейтронами и наступает невозбужденное состояние ядра. Однако, в среде, окружающей ядро, могут существовать гамма фотоны или фотоны дальней рентгеновской зоны. Протоны ядра, поглощая их, вновь возбуждаются.

С учетом изложенного возникает вопрос о последовательности процесса альфа – распада. Есть основания полагать, что он начинается с потери связи между электронами атома и протонами, входящими в состав альфа – частицы, в момент, когда она ещё связана с ядром, и превращением радиоактивного атома в ион. Лишь только в этом случае излучится альфа – частица, а не атом гелия.

Протоны альфа частицы, находящейся в ядре, освободившись от электронов, имеют свободные внешние связи, которые позволяют им поглощать фотоны. В результате энергии связей протонов или их совокупностей, подобных альфа – частицам, с нейтронами ядра, уменьшаясь, почти выравниваются. Это свойство установлено экспериментально и называется насыщением ядерных сил.

При этом связь между нейтроном альфа - частицы и другим нейтроном, через который альфа – частица связана с остальной частью ядра, может стать меньше энергии, формируемой кулоновскими силами, отталкивающими протоны. В результате альфа – частица выталкивается из ядра. Процесс отделения альфа – частицы от ядра зависит от энергии фотона, поглощённого протоном альфа – частицы. Он наступает только тогда, когда поглощенный фотон, уменьшает энергию связи между нейтронами (места этих связей показаны на рис. 81, d, e j стрелками) до величины меньшей энергии, формирующей кулоновские силы, действующие между протонами ядра.

Известно, что альфа – частица покидает ядро атома урана , поглотив фотон с энергией E=4,2 МэВ. Радиус (или длина волны) этого фотона равен

 

(210)

 

Это фотон начала гамма диапазона. Поскольку протоны расположены на поверхности ядер, то они формируют мощный положительный потенциал, который выталкивает альфа - частицу, отделившуюся от ядра, и сообщает ей скорость. Экспериментально установлено, что пробег этой частицы в воздухе может достигать 4 см. С виду, это небольшой пробег, но он больше размера ядра и самой частицы на 12 порядков.

Вполне естественно, что альфа – частица, имея положительный заряд, ионизирует атомы и молекулы среды, в которой она движется, и их электроны начинают излучать фотоны, формирующие след частицы в среде. Это – главная экспериментальная информация, позволяющая изучать альфа – частицы и их поведение.

 

Бета – распад

Бета – распад – излучение нейтронами электронов, которые объединяются в кластеры и называются тяжёлыми электронами или отрицательно заряженными бета – частицами (рис. 82). Одна из главных причин бета – распада – нестабильность нейтрона в свободном состоянии. Период его полураспада равен всего 12 мин. Бета – распад значительно сложнее альфа – распада, поэтому в нём больше противоречивой информации. Он сопровождается не только процессами излучения электронов нейтронами, но процессами поглощения электронов протонами. Главная особенность этих процессов заключается в том, что нарушается баланс масс до распада нейтрона и после, а также поглощение протоном дробного количества электронов.

 

 

Рис. 82. Кластеры электронов

 

Чтобы спастись от непонимания этого таинственного явления, физики придумали частицу, которая уносит недостающую массу, и назвали её нейтрино. Поскольку нет ни единого эксперимента прямой регистрации этой частицы, то ей придали экзотические свойства – отсутствие заряда и массы покоя, а также скорость, равную скорости света, и абсолютную проницаемость. Удивительно, но фотон имеет эти же свойства, за исключением абсолютной проницаемости, и великолепно проявляет себя в неисчислимом количестве экспериментов. Почему нейтрино, имея такие же свойства, никак не проявляет себя? Об этом даже и не задумались, продолжая попытки найти экспериментальные факты, где нейтрино, вроде бы проявляет себя.

Удивительно и то, что эксперты Нобелевского комитета легко соглашаются со столь сомнительными достижениями и продолжают выдавать за них премии. А почему не посмотреть на таинственную роль нейтрино по-новому?

Известно, что эксперименты бывают прямые и косвенные. Первые сразу дают необходимый результат, а вторые – лишь косвенную информацию о том, что полученный результат соответствует реальности. Тут есть основания ввести понятие ступени косвенности. Можно считать близким к реальности показатель соответствующий первой ступени косвенности. Увеличение количества этих ступеней переводит процесс познания, который назван в народе: гадание на кофейной гуще. Что касается нейтрино, то оно проявляет себя в экспериментах 5–ой или даже в 10-ой ступени косвенности. Тем не менее, ученые сохраняют серьёзность в оценке достоверности такой информации, так как отказ от её достоверности оказывается слишком дорогим для их тщеславия. Он разрушает с трудом построенное теоретическое здание не только ядерной, но и атомной физики.

Мы не связаны с этими заблуждениями, поэтому поступим просто: сформулируем новую гипотезу и посмотрим на её плодотворность. Часть массы исчезающей в ядерных процессах, не оформившись ни в какую частицу, образно говоря, растворяется, превращаясь в субстанцию, называемую эфиром. Мы уже показали, что эфир является основным источником восстановления массы электрона после излучения им фотонов. Так что если величина теряемой массы не соответствует стабильной массе какой-либо элементарной частицы, то эта масса не оформившись ни в какую частицу, превращается в эфир. А теперь приведём количественные расчёты.

Известно, что масса покоя электрона , масса покоя протона , а масса покоя нейтрона . Разность между массой нейтрона и протона оказывается равной . Это составляет масс электрона.

Таким образом, чтобы протон стал нейтроном, он должен захватить 2,531 электрона. Поскольку поглощается только целое число электронов, то возникает вопрос: куда девается остаток массы электрона? Современная физика нарушенный баланс масс в этом процессе объясняет просто - рождением нейтрино.

Изложенное позволяет полагать, что протон может поглощать не единичные электроны, а их кластеры. Однако, в любом случае часть электрона с массой останется не поглощенной потому, что лишняя масса не нужна протону для поддержания его стабильного состояния. Не сформировавшись ни в какую частицу, она разрушается, превращаясь в субстанцию, которую мы называем эфиром.

Таким образом, если протон ядра поглощает 2,531 масс электрона, то он становится нейтроном и рождается ядро нового химического элемента с меньшим количеством протонов. Вполне естественно, что новый химический элемент окажется левее старого в таблице Д.И. Менделеева.

Известно, что нейтрон, излучивший электроны, превращается в протон. Вполне естественно, что при этом появляется ядро нового химического элемента, расположенного в периодической таблице правее старого элемента.

Во всех этих случаях проявляется дисбаланс масс, обусловленный тем, что электрон, протон и нейтрон существуют в стабильном состоянии только при строго определённой массе. Конечно, описанные процессы сопровождаются излучениями и поглощениями гамма фотонов, которые вносят свой вклад в формирование дисбаланса масс ядер на разных стадиях их трансформации, но мы пока не будем останавливаться на детальном анализе этих процессов.

 



Дата добавления: 2016-06-22; просмотров: 2566;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.013 сек.