Лимфатические сосуды


Лимфатические сосуды делятся на:

1) лимфатические ка­пилляры;

2) выносящие интраорганные и экстраорганные лимфатические сосуды;

3) крупные лимфатические стволы (грудной лимфатический проток и правый лимфатический проток).

Кроме того, лимфатические сосуды подразделяются на:

1) сосуды безмышечного (волокнистого) типа и 2) сосуды мышечного типа. Гемодинамические условия (скорость лимфотока и давление) близки к условиям в венозном русле. В лимфатических сосудах хорошо развита наружная оболоч­ка, за счет внутренней оболочки образуются клапаны.

Лимфатические капилляры начинаются слепо, распола­гаются рядом с кровеносными капиллярами и входят в со­став микроциркуляторного русла, поэтому между лимфокапиллярами и гемокапиллярами имеется тесная анатомиче­ская и функциональная связь. Из гемокапилляров в основное межклеточное вещество поступают необходимые компонен­ты основного вещества, а из основного вещества в лимфати­ческие капилляры поступают продукты обмена веществ, компоненты распада веществ при патологических процес­сах, раковые клетки.

Отличия лимфатических капилляров от кровеносных:

1) имеют больший диаметр;

2) их эндотелиоциты в 3-4 раза больше;

3) не имеют базальной мембраны и перицитов, ле­жат на выростах коллагеновых волокон;

4) заканчиваются слепо.

Лимфатические капилляры образуют сеть, впадают в мелкие интраорганные или экстраорганные лимфатиче­ские сосуды.

Функции лимфатических капилляров:

1) из межтканевой жидкости в лимфокапилляры поступают ее компоненты, ко­торые, оказавшись в просвете капилляра, в совокупности со­ставляют лимфу;

2) дренируются продукты метаболизма;

3) оступают раковые клетки, которые затем транспортиру­ются в кровь и разносятся по всему организму.

Внутриорганные выносящие лимфатические сосуды яв­ляются волокнистыми (безмышечными), их диаметр — около 40 мкм. Эндотелиоциты этих сосудов лежат на слабо выра­женной мембране, под которой располагаются коллагеновые и эластические волокна, переходящие в наружную оболочку. Эти сосуды еще называют лимфатическими посткапилляра­ми, в них есть клапаны. Посткапилляры выполняют дренаж­ную функцию.

Экстраорганные выносящие лимфатические сосуды бо­лее крупные, относятся к сосудам мышечного типа. Если эти сосуды располагаются в области лица, шеи и в верхней части туловища, то мышечные элементы в их стенке содержатся в малом количестве; если в нижней части тела и нижних ко­нечностях — миоцитов больше.

Лимфатические сосуды среднего калибра также относят­ся к сосудам мышечного типа. В их стенке лучше выражены все 3 оболочки: внутренняя, средняя и наружная. Внутрен­няя оболочка состоит из эндотелия, лежащего на слабо выра­женной мембране; субэндотелия, в котором содержатся раз­нонаправленные коллагеновые и эластические волокна; сплетения эластических волокон.

Клапаны лимфатических сосудов образованы за счет вну­тренней оболочки. Основой клапанов является фиброзная пластинка, в центре которой есть гладкие миоциты. Эта пла­стинка покрыта эндотелием.

Средняя оболочка сосудов среднего калибра представлена пучками гладких миоцитов, направленных циркулярно и ко­со, и прослойками рыхлой соединительной ткани.

Наружная оболочка сосудов среднего калибра представле­на рыхлой соединительной тканью, волокна которой перехо­дят в окружающую ткань.

Лимфангион — это участок, расположенный между двумя соседними клапанами лимфатического сосуда. Он включает мышечную манжетку, стенку клапанного синуса и место при­крепления клапана.

Крупные лимфатические стволы представлены правым лимфатическим протоком и грудным лимфатическим прото­ком. В крупных лимфатических сосудах миоциты расположе­ны во всех трех оболочках.

Грудной лимфатический проток имеет стенку, строение которой схоже со строением нижней полой вены. Внутрен­няя оболочка состоит из эндотелия, субэндотелия и сплете­ния эластических волокон. Эндотелий лежит на слабо выра­женной прерывистой базальной мембране, в субэндотелии имеются малодифференцированные клетки, гладкие миоци­ты, коллагеновые и эластические волокна, ориентированные в различных направлениях.

За счет внутренней оболочки образованы 9 клапанов, ко­торые способствуют продвижению лимфы в сторону вен шеи.

Средняя оболочка представлена гладкими миоцитами, имеющими циркулярное и косое направления, разнонапра­вленными коллагеновыми и эластическими волокнами.

Наружная оболочка на уровне диафрагмы в 4 раза толще внутренней и средней оболочек, вместе взятых; состоит из рыхлой соединительной ткани и продольно расположенных пучков гладких миоцитов. Проток вливается в вену шеи. Стенка лимфатического протока около устья в 2 раза тоньше, чем на уровне диафрагмы.

Функции лимфатической системы:

1) дренажная — в лим­фатические капилляры поступают продукты обмена, вредные вещества, бактерии;

2) фильтрация лимфы, т. е. очищение от бактерий, токсинов и других вредных веществ в лимфатиче­ских узлах, куда поступает лимфа;

3) обогащение лимфы лим­фоцитами в тот момент, когда лимфа протекает по лимфатиче­ским узлам.

Очищенная и обогащенная лимфа поступает в кровеносное русло, т. е. лимфатическая система выполняет функцию обновления основного межклеточного вещества и внутренней среды организма.

Кровоснабжение стенок кровеносных и лимфатиче­ских сосудов. В адвентиции кровеносных и лимфатических сосудов имеются сосуды сосудов (vasa vasorum) — это мелкие артериальные ветви, которые разветвляются в наружной и средней оболочках стенки артерий и всех трех оболочках вен. Из стенок артерий кровь капилляров собирается в венулы и вены, которые располагаются рядом с артериями. Из капилляров внутренней оболочки вен кровь поступает в просвет вены.

Кровоснабжение крупных лимфатических стволов отлича­ется тем, что артериальные ветви стенок не сопровождаются венозными, которые идут отдельно от соответствующих арте­риальных. В артериолах и венулах сосуды сосудов отсутствуют.

Репаративная регенерация кровеносных сосудов.При повреждении стенки кровеносных сосудов через 24 часа быстро делящиеся эндотелиоциты закрывают дефект. Реге­нерация гладких миоцитов стенки сосудов протекает медлен­но, так как они реже делятся. Образование гладких миоцитов происходит за счет их деления, дифференцировки миофибробластов и перицитов в гладкие мышечные клетки.

При полном разрыве крупных и средних кровеносных со­судов их восстановление без оперативного вмешательства хирурга невозможно. Однако кровоснабжение тканей дистальнее разрыва частично восстанавливается за счет коллатералей и появления мелких кровеносных сосудов. В част­ности, из стенки артериол и венул происходит выпячивание делящихся эндотелиоцитов (эндотелиальные почки). Затем эти выпячивания (почки) приближаются друг к другу и сое­диняются. После этого тонкая перепонка между почками раз­рывается, и образуется новый капилляр.

Регуляция функции кровеносных сосудов. Нервная ре­гуляция осуществляется эфферентными (симпатическими и парасимпатическими) и чувствительными нервными во­локнами, являющимися дендритами чувствительных нейро­нов спинальных ганглиев и чувствительных ганглиев головы.

Эфферентные и чувствительные нервные волокна густо оплетают и сопровождают кровеносные сосуды, образуя нер­вные сплетения, в состав которых входят отдельные нейроны и интрамуральные ганглии.

Чувствительные волокна заканчиваются рецепторами, имеющими сложное строение, т. е. являются поливалентны­ми. Это значит, что один и тот же рецептор одновременно контактирует с артериолой, венулой и анастомозом или со стенкой сосуда и соединительнотканными элементами. В адвентиции крупных сосудов могут быть самые разнообразные рецепторы (инкапсулированные и неинкапсулированные), которые часто образуют целые рецепторные поля.

Эфферентные нервные волокна заканчиваются эффекто­рами (моторными нервными окончаниями).

Симпатические нервные волокна являются аксонами эф­ферентных нейронов симпатических ганглиев, они заканчи­ваются адренергическими нервными окончаниями.

Парасимпатические нервные волокна являются аксонами эфферентных нейронов (клеток Догеля I типа) интрамуральных ганглиев, они являются холинергическими нервными волокнами и заканчиваются холинергическими моторными нервными окончаниями.

При возбуждении симпатических волокон сосуды сужива­ются, парасимпатических — расширяются.

Нейропарсисринная регуляция характеризуется тем, что в одиночные эндокринные клетки по нервным волокнам по­ступают нервные импульсы. Этими клетками выделяются биологически активные вещества, которые воздействуют на кровеносные сосуды.

Эндотелиалъная, или интималъная, регуляция характе­ризуется тем, что эндотелиоциты выделяют факторы, регу­лирующие сократимость миоцитов сосудистой стенки. Кроме того, эндотелиоциты вырабатывают вещества, препятствую­щие свертыванию крови, и вещества, способствующие свер­тыванию крови.

Возрастные изменения артерий. Артерии окончательно развиваются к 30-летнему возрасту человека. После этого в течение десяти лет наблюдается их стабильное состояние.

При наступлении 40-летнего возраста начинается их обратное развитие. В стенке артерий, особенно крупных, разрушаются эластические волокна и гладкие миоциты, разрастаются коллагеновые волокна. В результате очагового разрастания коллагеновых волокон в субэндотелии крупных сосудов, накопле­ния холестерина и сульфатированных гликозаминогликанов субэндотелий резко утолщается, стенка сосудов уплотняется, в ней откладываются соли, развивается склероз, нарушается кровоснабжение органов. У лиц старше 60-70 лет в наружной оболочке появляются продольные пучки гладких миоцитов.

Возрастные изменения вен аналогичны изменениям ар­терий. Однако в венах имеют место более ранние изменения. В субэндотелии бедренной вены новорожденных и грудных детей отсутствуют продольные пучки гладких миоцитов, они появляются только тогда, когда ребенок начинает ходить. У маленьких детей диаметр вен такой же, как и диаметр ар­терий. У взрослых диаметр вен в 2 раза больше диаметра ар­терий. Это связано с тем, что кровь в венах течет медленнее, чем в артериях, а чтобы при медленном токе крови был ба­ланс крови в сердце, т. е. сколько уйдет из сердца артериаль­ной крови, столько же поступит венозной, вены должны быть более широкие.

Стенка вен тоньше стенки артерий. Это объясняется осо­бенностью гемодинамики в венах, т. е. низким внутривен­ным давлением и медленным током крови.

Сердце

Развитие. Сердце начинает развиваться на 17-е сутки из двух зачатков: 1)мезенхимы и 2) миоэпикардиальных пластинок висцерального листка спланхнотома в краниальном конце эм­бриона.

Из мезенхимы справа и слева образуются трубочки, которые впячиваются в висцеральные листки спланхнотомов. Та часть висцеральных листков, которая прилежит к мезенхимным трубочкам, превращается в миоэпикардиальную пластинку. В дальнейшем с участием туловищной складки происходит сближение правого и левого зачатков сердца и за­тем соединение этих зачатков впереди передней кишки. Из слившихся мезенхимных трубочек формируется эндокард сердца. Клетки миоэпикардиальных пластинок дифференци­руются в 2 направлениях: из наружной части образуется мезотелий, выстилающий эпикард, а клетки внутренней части дифференцируются в трех направлениях. Из них образуются: 1) сократительные кардиомиоциты; 2) проводящие кардиомиоциты; 3) эндокринные кардиомиоциты.

В процессе дифференцировки сократительных кардиомиоцитов клетки приобретают цилиндрическую форму, со­единяются своими концами при помощи десмосом, где в дальнейшем формируются вставочные диски (discus in­tercalates). В формирующихся кардиомиоцитах появляют­ся миофибриллы, расположенные продольно, канальцы гладкой ЭПС, за счет впячивания сарколеммы образуются Т-каналы, формируются митохондрии.

Проводящая система сердца начинает развиваться на 2-м месяце эмбриогенеза и заканчивается на 4-м месяце.

Клапаны сердца развиваются из эндокарда. Левый атриовентрикулярный клапан закладывается на 2-м месяце эмбрио­генеза в виде складки, которая называется эндокардиалъным валиком. В валик врастает соединительная ткань из эпикарда, из которой образуется соединительнотканная основа створок клапана, прикрепляющаяся к фиброзному кольцу.

Правый клапан закладывается в виде миоэндокардиального валика, в состав которого входит гладкая мышечная ткань. В створки клапана врастает соединительная ткань миокарда и эпикарда, при этом количество гладких миоци­тов уменьшается, они сохраняются лишь у основания ство­рок клапана.

На 7-й неделе эмбриогенеза формируются интрамуральные ганглии, включающие мультиполярные нейроны, между которыми устанавливаются синапсы.

СТЕНКА СЕРДЦА

ЭНДОКАРД (полость сердца) 1. эндотелий (на толстой базальной мембране) 2. подэнтотелиальный слой (РСТ с малодифференцированными клетками) 3. мышечно-эластический слой 4. наружный соединительно-тканный слой (РСТ с толстыми эластическими волокнами, имеются коллагеновые и ретикулярные волокна) (миокард) ЭПИКАРД (полость перикарда) 1. мезотелий на базальной мембране 2. поверхностный слой коллагеновых волокон 3. слой эластических волокон 4. глубокий слой коллегеновых волокон 5. глубокий коллагеново-эластический слой (миокард)
ПЕРИКАРД мезотелий на базальной мембране + тонкая прослойка РСТ, с большим содержанием эластических волокон
МИОКАРД сократительные кардиомиоциты, проводящие (атипичные) кардиомиоциты + межмышечная рыхлая соединительная ткань

Стенка сердца состоит из 3 оболочек: 1) эндокарда (endo­cardium), 2) миокарда (myocardium) и 3) эпикарда (epicardium).

Эндокард выстилает предсердия и желудочки, в разных местах имеет различную толщину, состоит из 4 слоев: 1) эн­дотелия; 2) субэндотелия; 3) мышечно-эластического слоя; 4) наружного соединительнотканного слоя.

Таким образом, строение стенки эндокарда соответствует строению вены мышечного типа: эндотелию эндокарда соответствует эндо­телий вены, субэндотелию эндокарда — субэндотелий вены, мышечно-эластическому слою — сплетение эластических волокон и средняя оболочка вены, наружному соединитель­нотканному слою — наружная оболочка вены. В эндокарде отсутствуют кровеносные сосуды. За счет эндокарда сформи­рованы атриовентрикулярные клапаны и клапаны аорты и легочной артерии.

Левый атриовентрикулярный клапан включает 2 створ­ки. Основой створки клапана является соединительноткан­ная пластинка, состоящая из коллагеновых и эластических волокон, незначительного количества клеток и основного межклеточного вещества. Пластинка прикрепляется к фи­брозному кольцу, окружающему клапан, и покрыта эндотелиоцитами, под которыми находится субэндотелий.

Правый атриовентрикулярный клапан состоит из 3 створок. Поверх­ность клапанов, обращенных к предсердию, гладкая, к желу­дочку — неровная, так как к этой поверхности прикрепляют­ся сухожилия сосочковых мышц.

Клапаны аорты и легочной артерии называются полу­лунными. Они состоят из 3 слоев: 1) внутреннего; 2) среднего и 3) наружного.

Внутренний слой сформирован за счет эндокарда, вклю­чает эндотелий, субэндотелий, содержащий фибробласты с консолями, поддерживающими эндотелиальные клетки. Глубже располагаются слои коллагеновых и эластических волокон.

Средний слой представлен рыхлой соединительной тканью.

Наружный слой состоит из эндотелия, сформированного за счет эндотелия сосуда, и коллагеновых волокон, прони­кающих в субэндотелий клапана из фиброзного кольца.

Миокард состоит из функциональных волокон, которые образуются при соединении концов кардиомиоцитов. Кардиомиоциты имеют цилиндрическую форму, их длина — до 120 мкм, диаметр 15-20 мкм. Места соединения концов кар­диомиоцитов называются вставочными дисками (discus in­tercalates). В состав дисков входят десмосомы, места прикре­пления актиновых филаментов, интердигитации и нексусы. В центре кардиомиоцита располагается 1-2 овальных, обыч­но полиплоидных, ядра.

В кардиомиоцитах хорошо развиты митохондрии, глад­кая ЭПС, миофибриллы, слабо развиты гранулярная ЭПС, комплекс Гольджи, лизосомы. В оксифильной цитоплазме имеются включения гликогена, липидов и миоглобина.

Миофибриллы состоят из актиновых и миозиновых фила­ментов. За счет актиновых филаментов образуются светлые (изотропные) диски, разделенные телофрагмами. За счет миозиновых филаментов и заходящих между ними концов актиновых филаментов образуются анизотропные диски (ди­ски А), разделенные мезофрагмой. Между двумя телофрагма­ми располагается саркомер, являющийся структурной и функциональной единицей миофибриллы.

Напротив каждого диска имеется система L-канальцев, включающих 2 латеральные цистерны (канальца), соединен­ные продольными канальцами. Система L-канальцев окру­жает миофибриллы. На границе между дисками со стороны сарколеммы отходит впячивание — Т-канал, который рас­полагается между латеральными цистернами двух соседних L-систем. Структура, состоящая из Т-канала и двух лате­ральных цистерн, между которыми проходит этот канал, называется триадой.

От боковой поверхности кардиомиоцитов отходят отро­стки — мышечные анастомозы, которые соединяются с бо­ковыми поверхностями кардиомиоцитов соседнего функ­ционального волокна. Благодаря мышечным анастомозам сердечная мышца представляет собой единое целое. Сер­дечная мышца прикрепляется к скелету сердца. Скелетом сердца являются фиброзные кольца вокруг атриовентрикулярных клапанов и клапанов легочной артерии и аорты.

Секреторные кардиомиоциты (эндокриноциты) находят­ся в предсердии, содержат много отростков. В этих клетках слабо развиты миофибриллы, гладкая ЭПС, Т-каналы, вста­вочные диски; хорошо развиты комплекс Гольджи, грануляр­ная ЭПС и митохондрии, в цитоплазме содержатся секретор­ные гранулы. Функция: вырабатывают гормон — ПНФ[4]. ПНФ воздействует на те клетки, которые имеют специальные ре­цепторы к нему. Такие рецепторы имеются на поверхности со­кратительных кардиомиоцитов, миоцитов кровеносных сосу­дов, эндокриноцитах клубочковой зоны коры надпочечников, клетках эндокринной системы почек. Таким образом, ПНФ стимулирует сокращение сердечной мышцы, регулирует арте­риальное давление, водно-солевой обмен, мочевыделение.

Механизм воздействия ПНФ на клетки-мишени. Рецеп­тор клетки-мишени захватывает ПНФ, и образуется гормонально-рецепторный комплекс. Под влиянием этого комплек­са активируется гуанилатциклаза, под воздействием которой синтезируется циклический гуанинмонофосфат. Цикличе­ский гуанинмонофосфат активирует ферментную систему клетки.

Проводящая система сердца (systema conducens cardiacum) – мышечные клетки, формирующие и проводящие импульсы к сократительным клеткам сердца.

Проводящая система сердца представлена синусно-предсердным узлом, атриовентрикулярным узлом, предсердно-желудочковым пучком (пучком Гиса) и ножками пучка Гиса.

Синусно-предсердный узел представлен пейсмекерными клетками (Р-клетками), расположенными в центре узла, диа­метр которых 8-10 мкм. Форма Р-клеток овальная, их миофибриллы развиты слабо, имеют различное направление. Глад­кая ЭПС Р-клеток развита слабо, в цитоплазме имеется вклю­чение гликогена, митохондрии, отсутствуют вставочные ди­ски и Т-каналы. В цитоплазме Р-клеток много свободного кальция, благодаря чему они способны ритмично вырабаты­вать сократительные импульсы.

Снаружи от пейсмекерных клеток располагаются прово­дящие кардиомиоциты II типа. Это узкие, удлиненные клет­ки, малочисленные миофибриллы которых расположены ча­ще всего параллельно. В клетках слабо развиты вставочные диски и Т-каналы. Функция — проведение импульса к прово­дящим кардиомиоцитам III типа или к сократительным кардиомиоцитам. Проводящие кардиомиоциты II типа иначе на­зываются переходными.

Атриовентрикулярный узел состоит из небольшого коли­чества пейсмекерных клеток, расположенных в центре узла, и многочисленных проводящих кардиомиоцитов II типа. Функции атриовентрикулярного узла: 1) вырабатывает им­пульс с частотой 30-40 в минуту; 2) кратковременно задер­живает прохождение импульса, идущего от синусно-предсердного узла на желудочки, благодаря чему сначала сокраща­ются предсердия, потом — желудочки.

В том случае, если прекращается поступление импульсов от синусно-предсердного узла к атриовентрикулярному (по­перечная блокада сердца), то предсердия сокращаются в обычном ритме (60-80 сокращений в минуту), а желудоч­ки — в 2 раза реже. Это опасное для жизни состояние.

Проводящие кардиомиоциты III типа расположены в пуч­ке Гиса и его ножках. Их длина 50-120 мкм, ширина — около 50 мкм. Цитоплазма этих кардиомиоцитов светлая, разнона­правленные миофибриллы, вставочные диски и Т-каналы развиты слабо. Их функция — передача импульса от кардио­миоцитов II типа на сократительные кардиомиоциты. Кар­диомиоциты III типа образуют пучки (волокна Пуркинье), которые чаще всего располагаются между эндокардом и мио­кардом, встречаются в миокарде. Волокна Пуркинье подхо­дят и к сосочковым мышцам, благодаря чему к моменту со­кращения желудочков напрягаются сосочковые мышцы, что препятствует выворачиванию клапанов в предсердия.



Дата добавления: 2020-03-21; просмотров: 544;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.02 сек.