Методы и средства технического диагностирования
Для оценки диагностических признаков и заключения о техническом состоянии оборудования используют различные методы.
Методы диагностирования классифицируют в зависимости от характера и физической сущности распознаваемых признаков и измеряемых параметров технического состояния объектов.
Акустические методы технического диагностирования, основаны на измерении амплитуды и частоты звуковых колебаний, излучаемых объектом в процессе работы. Изменение технического состояния элементов машин в процессе работы — увеличение зазоров в сопряжениях, изменение нагрузочного, скоростного и теплового режимов работы деталей вследствие их изнашивания, старения, коррозии вызывает соответствующие изменения параметров звуковых колебаний. Сопоставляя эмпирические значения звуковых сигналов с эталонными, можно судить о техническом состоянии объекта в данный момент времени и прогнозировать его изменение на некоторый период.
Поскольку в формировании звукового потока участвуют практически все подвижные объекта диагностирования, акустические методы позволяют оценить техническое состояние большинства основных элементов по величинам излучаемых ими звуковых сигналов. Основная сложность при этом состоит в выделении определенного сигнала из общего спектра и распознавании его принадлежности тому или иному элементу машины. Для оценки звукового сигнала (выделения его из общего спектра и измерения) используют специальную аппаратуру — спектрометры, шумомеры, осцилографы.
Акустические методы диагностирования применяют в основном для оценки технического состояния элементов, силовых уста-новок, механических и гидромеханических передач.
Виброметрическиеметоды основаны на измерении параметров вибрации объекта диагностирования. Уровень вибрации объекта в процессе работы определяют техническим состоянием его основных элементов: размерами зазоров в сопряжениях, износом деталей. Поэтому, измеряя параметры вибрации (частоту, амплитуду, ускорение) и сравнивая их с эталонными значениями, можно оценивать техническое состояние объекта диагностирования в данный момент времени и прогнозировать его изменение на некоторый период.
Рис.21. Блок-схема виброметрической аппаратуры.
Приведенная на рис.21 блок-схема иллюстрирует устройство и принцип действия виброметрической аппаратуры. Установленный непосредственно на поверхности объекта датчик 1 регистрирует механические вибрационные колебания и передает соответствующие электрические сигналы на усилитель-анализатор 2. Каскад электронных интеграторов обеспечивает измерение амплитуды, скорости и ускорения механических колебаний. Набор частотных фильтров 3 позволяет настраивать прибор на соответствующий рабочий частотный диапазон. Кроме того, фильтры служат для подавления помех, обусловленных низко- и высокочастотными шумами. Запись сигнала производят с помощью самописца 4 или какого-либо другого регистрирующего прибора (например, измерительного магнитофона), подключаемого на его место.
Поскольку параметры вибрации, используемые в качестве диагностических, являются широко информативными и формируются под воздействием большого количества элементов объекта, основной сложностью при диагностировании виброметрическими методами является, как и в предыдущем случае, распознавание принадлежности сигнала определенному элементу.
Виброметрические методы используют для диагностирования элементов силовых установок, механических и гидромеханических передач.
Методы технического диагностирования по составу масел наиболее универсальны и широко применяются для экспресс-оценки состояния двигателей, элементов трансмиссии, гидравлических систем управления, а также смазочных материалов и рабочих жидкостей.
Основными диагностическими параметрами в этих случаях являются концентрация, дисперсионный и элементарный составы механических примесей, кинематическая вязкость масла, кислотное и щелочное числа, а также содержание в масле воды.
Для анализа содержания механических примесей в масле используют химический, спектральный, радиометрический, активационный и оптико-физические методы.
Функциональные методы диагностирования основаны на измерении косвенных параметров объекта, характеризующих техническое состояние его элементов через уровень функционирования. В зависимости от характера распознаваемых признаков изменения технического состояния объекта диагностирование функциональными методами может производиться по мощностным и технико-экономическим показателям, тепловому состоянию, герметичности рабочих объемов, тормозному пути.
Метод оценки технического состояния машин по мощностным и технико-экономическим показателям используют как для общего, так и для углубленного поэлементного диагностирования. В основе метода лежат зависимости эффективности использования машины от технического состояния ее основных элементов. В качестве диагностических параметров в этом случае используют эффективную мощность двигателя, силу тяги, рабочую скорость, грузоподъемность. В зависимости от характера измеряемых диагностических параметров подбирают соответствующее диагностическое оборудование.
Методы диагностирования машин по тепловому состоянию и герметичности рабочих объемов имеют более узкую область применения. Их в основном используют для оценки технического состояния элементов двигателей и гидросистем.
Поскольку ни один из перечисленных методов не позволяет произвести полную оценку технического состояния машины, при углубленном техническом диагностировании часто используют комбинированные виброакустические методы и совокупность функциональных методов.
Средства технической диагностики оборудования для различных методов диагностики приведены в табл.5.
Дата добавления: 2016-06-22; просмотров: 4455;