Тема 50: Спектры и спектральный анализ


План занятия:

1. Виды спектров

2. Спектральный анализ

Вопрос 1. Виды спектровНепрерывные спектры.
Это означает, что в спектре представлены волны всех длин. В спектре нет разрывов, и на экране спектрографа можно видеть сплошную разноцветную полосу. Непрерывные (или сплошные) спектры дают тела, находящиеся в твердом или жидком состоянии, а также сильно сжатые газы. Для получения непрерывного спектра нужно нагреть тело до высокой температуры. Непрерывный спектр дает также высокотемпературная плазма. Электромагнитные волны излучаются плазмой в основном при столкновении электронов с ионами. Линейчатые спектры. Линейчатые спектры представляют собой набор цветных линий различной яркости, разделенных широкими темными полосами. Линейчатые спектры дают все вещества в газообразном атомарном (но не молекулярном) состоянии. Изолированные атомы химического элемента излучают строго определенные длины волн. Обычно для наблюдения линейчатых спектров используют свечение паров вещества в пламени или свечение газового разряда в трубке, наполненной исследуемым газом. При увеличении плотности атомарного газа отдельные спектральные линии расширяются и, при очень большой плотности газа, когда взаимодействие атомов становится существенным, эти линии перекрывают друг друга, образуя непрерывный спектр. Полосатые спектры. Полосатый спектр состоит из отдельных полос, разделенных темными промежутками. С помощью очень хорошего спектрального аппарата можно обнаружить, что каждая полоса представляет собой совокупность большого числа очень тесно расположенных линий. В отличие от линейчатых спектров полосатые спектры создаются не атомами, а молекулами, не связанными или слабо связанными друг с другом. Спектры поглощения. Все вещества, атомы которых находятся в возбужденном состоянии, излучают световые волны, энергия которых определенным образом распределена по длинам волн. Поглощение света веществом также зависит от длины волны Если пропускать белый свет сквозь холодный, неизлучающий газ, то на фоне непрерывного спектра источника появляются темные линии. Газ поглощает наиболее интенсивно свет как раз тех длин волн, которые он испускает в сильно нагретом состоянии. Темные линии на фоне непрерывного спектра - это линии поглощения, образующие в совокупности спектр поглощения. Существуют непрерывные, линейчатые и полосатые спектры поглощения.

Вопрос 2. Спектральный анализ Спектральным анализомназывается метод изучения химического состава вещества, основанный на исследовании его спектров. Спектральные аппараты. Для получения и исследования спектров используют спектральные аппараты. Наиболее простые – призма и дифракционная решетка. Более точные – спектроскоп и спектрограф. Спектроскопом называется прибор, с помощью которого визуально исследуется спектральный состав света, испускаемого некоторым источником. Спектрографом называется прибор, котором спектр регистрируется на фотопластинке. Принцип действия прибора основан на явлении дисперсии. Дисперсия – зависимость показателя преломления света от длины волны или частоты. Наблюдая спектры, ученые получили возможность «заглянуть» внутрь атома. С помощью спектрального анализа можно обнаружить данный элемент в составе сложного вещества, если даже его масса не превышает 10-10г. Линии, присущие данному элементу, позволяют качественно судить о его наличии. Яркость линий дает возможность (при соблюдении стандартных условий возбуждения) количественно судить о наличии того или иного элемента. Спектральный анализ можно проводить и по спектрам поглощения. Именно линии поглощения в спектре Солнца и звезд позволяют исследовать химический состав этих небесных тел. В астрофизике по спектрам можно определить многие физические характеристики объектов: температуру, давление, скорость движения, магнитную индукцию и др. Основные направления применения спектрального анализа таковы: физико-химические исследования; машиностроение, металлургия; атомная индустрия; астрономия, астрофизика, криминалистика.

Вопросы для самоконтроля

1. Какие виды спектров существуют?

2. Что можно определить с помощью спектра?

3. Что такое спектральный анализ?

Тема 51: Виды электромагнитных излучений

План:

1. Ультрафиолетовое и инфракрасное излучения.

2. Рентгеновские лучи. Их природа и свойства

Вопрос 1. Ультрафиолетовое и инфракрасное излучения. Инфракрасное излучение – электромагнитное излучение, с частотой в диапазоне от 3*10^11 до 3,75*10^14 Гц. Данный вид излучения присущ всем нагретым телам. Тело испускает инфракрасное излучение, даже если оно не светится. К примеру, в каждом доме или квартире есть батареи для отопления. Они испускают инфракрасное излучение, хотя мы его не видим. Вследствие чего в доме происходит нагревание окружающих тел. инфракрасное излучение применяется для сушки овощей, фруктов, различных лакокрасочных покрытий и т.д. Существуют приборы, которые позволяют преобразовать невидимое инфракрасное излучение в видимое. Ультрафиолетовое излучение - электромагнитное излучение, с частотой в диапазоне от 8*10^14 до 3*10^16 Гц. Длина волны колеблется от 10 до 380 мкм. Ультрафиолетовое излучение так же не видно невооруженным человеческим глазом. Чтобы обнаружить ультрафиолетовое излучение, необходимо иметь специальный экран, который будет покрыт люминесцирующим веществом. Если на такой экран попадут ультрафиолетовые лучи, то в месте контакта он начнет светиться. У ультрафиолетовых лучей очень высока химическая активность. Например, высоко в горах нельзя долго находиться без одежды и темных очков, так как ультрафиолетовые лучи, направленные от Солнца, недостаточно поглощаются в атмосфере нашей планеты. Даже обычные очки могут защитить глаза от вредного ультрафиолетового излучения - стекло очень сильно поглощает ультрафиолетовые лучи. Однако, в малых дозах ультрафиолетовые лучи даже полезны. Они оказывают влияние на центральную нервную систему, стимулируют ряд важных жизненных функций. Под их воздействием на коже появляется защитный пигмент - загар. Помимо всего прочего эти лучи убивают различные болезнетворные бактерии. С этой целью чаще всего они используются в медицине.

Вопрос 2. Рентгеновские лучи. Их природа и свойства.Рентгеновы лучи — это разновидность электромагнитных волн, к числу которых относятся также световые лучи, гамма-лучи радия и лучи, испускаемые радиоантеннами. Но так как длина волны рентгеновых лучей мала, а энергия квантов велика, то они обладают еще другими свойствами: 1) проникают через среды различной плотности — картон, дерево, ткани организма животного и т. д. Проникающая способность рентгеновых лучей тем больше, чем короче длина волны и, следовательно, больше энергия квантов. 2) вызывают свечение — люминесценцию некоторых химических соединений. Одни вещества светятся в момент действия рентгеновых лучей, такое свечение называется флуоресценцией. Другие вещества продолжают светиться некоторое время после того, как рентгеновы лучи прекратили действие, это свечение называется фосфоресценцией;3) подобно видимому свету, вызывают изменения в галоидных соединениях серебра, входящих в состав фотоэмульсий. Иначе говоря, вызывают фотохимические реакции;

4)вызывают ионизацию нейтральных атомов и молекул. В результате ионизации образуются положительно и отрицательно заряженные частицы — ионы. Ионизированная среда становится проводником электрического тока. Это свойство используют для измерения интенсивности лучей с помощью так называемой ионизационной камеры.В основе биологического действия рентгеновых лучей лежит явление ионизации.

Вопросы для самоконтроля

4. Что такое ультрафиолетовое излучение?

5. Что такое инфракрасное излучение?

6. Что такое Рентгеновское излучение?

7. Польза и вред данных излучений.

 

 

Тема 52: Постулаты Эйнштейна.

План:

1. Постулаты Эйнштейна.

2. Инвариантность модуля скорости света в вакууме.

 

Вопрос 1. Постулаты Эйнштейна.В своей работе Эйнштейн без единого нового эксперимента, проанализировав и обобщив уже известные опытные факты, впервые изложил идеи теории относительности, которые коренным образом изменили привычные представления о свойствах пространства и времени.

Теория относительности Эйнштейна состоит из двух частей: частной и общей теории относительности. В 1905 г. Эйнштейн опубликовал основные идеи частной или специальной теории относительности, в которой рассматриваются свойства пространства и времени, справедливые при условиях, когда можно пренебречь тяготением тел, т.е. считать их гравитационные поля 'пренебрежимо малыми. Теория относительности, в которой рассматриваются свойства пространства и времени в сильных гравитационных полях, называется общей теорией относительности. Принципы общей теории относительности были изложены Эйнштейном на 10 лет позже, чем частной, в 1915 г. В основу специальной теории относительности Эйнштейна легли два постулата, т.е. утверждения, которые принимаются за истинные в рамках данной научной теории без доказательств (в математике такие утверждения называются аксиомами).

1 постулат Эйнштейна или принцип относительности: все законы природы инвариантны по отношению ко всем инерциальным системам отсчета. Все физические, химические, биологические явления протекают во всех инерциальных системах отсчета одинаково.2 постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, ни одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.Анализируя 1 постулат Эйнштейна, мы видим, что Эйнштейн расширил рамки принципа относительности Галилея, распространив его на любые физические явления, в том числе и на электромагнитные. 1 постулат Эйнштейна непосредственно вытекает из опыта Майкельсона-Морли, доказавшего отсутствие в природе абсолютной системы отсчета. Из результатов этого нее опыта следует и 2 постулат Эйнштейна о постоянстве скорости света в вакууме, который тем не менее вступает в противоречие с 1 постулатом, если распространить на электромагнитные явления не только сам принцип относительности Галилея, но и галилеево правило сложения скоростей, вытекающее из галилеева правила преобразования координат (см. п. 10). Следовательно, преобразования Галилея для координат и времени, а также его правило сложения скоростей к электромагнитным явлениям неприменимы.

Вопрос 2. Инвариантность модуля скорости света в вакууме.Постулат или принцип постоянства скорости света: скорость света в вакууме постоянна и одинакова по отношении» к любым инерциальным системам отсчета. Она не зависит ни от скорости источника света, ни от скорости его приемника. Ни один материальный объект не может двигаться со скоростью, превышающей скорость света в вакууме. Более того, ни одна частица вещества, т.е. частица с массой покоя, отличной от нуля, не может достичь скорости света в вакууме, с такой скоростью могут двигаться лишь полевые частицы, т.е. частицы с массой покоя, равной нулю.

Вопросы для самоконтроля

1. Сформулируйте первый постулат теории относительности.

2. В чем смысл второго постулата теории относительности?

3. Объясните значение постулатов СТО.

 

 

Тема 53: Специальная теория относительности.

План:

1. Пространство в специальной теории относительности.

2. Время в специальной теории относительности.



Дата добавления: 2020-02-05; просмотров: 638;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.014 сек.