МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ И КОМПЬЮТЕРЫ


 

Математическая модель выражает существенные черты-объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных. В данной главе доминируют численные методы, реализуемые на компьютерах. Это связано с тем, что моделирование здесь рассматривается под углом зрения компьютерных (информационных) технологий. Такой подход несколько сужает возможности метода в целом; его достоинство - некоторое снижение барьера необходимой математической подготовки (хотя, разумеется, и в численные методы при профессиональном занятии математическим моделированием приходится углубляться настолько, что при этом требуется значительное математическое образование). Наконец, отметим, что понятия «аналитическое решение» и «компьютерное решение» отнюдь не противостоят друг другу, так как

а) все чаще компьютеры при математическом моделировании используются не только для численных расчетов, но и для аналитических преобразований;

б) результат аналитического исследования математической модели часто выражен столь сложной формулой, что при взгляде на нее не складывается восприятия описываемого ей процесса. Эту формулу (хорошо еще, если просто формулу!) нужно протабулировать, представить графически, проиллюстрировать в динамике, иногда даже озвучить, т.е. проделать то, что называется «визуализацией абстракций» . При этом компьютер - незаменимое техническое средство.

 

2.2. ЭТАПЫ И ЦЕЛИ КОМПЬЮТЕРНОГО
МАТЕМАТИЧЕСКОГО МОДЕЛИРОВАНИЯ

 

Здесь мы рассмотрим процесс компьютерного математического моделирования, включающий численный эксперимент с моделью (рис. 7.1).

Первый этап - определение целей моделирования. Основные из них таковы:

1) модель нужна для того, чтобы понять как устроен конкретный объект, какова его структура, основные свойства, законы развития и взаимодействия с окружающим миром (понимание);

2) модель нужна для того, чтобы научиться управлять объектом (или процессом) и определить наилучшие способы управления при заданных целях и критериях (управление);

3) модель нужна для того, чтобы прогнозировать прямые и косвенные последствия реализации заданных способов и форм воздействия на объект (прогнозирование).

Поясним это на примерах. Пусть объект исследования - взаимодействие потока жидкости или газа с телом, являющимся для этого потока препятствием. Опыт показывает, что сила сопротивления потоку со стороны тела растет с ростом скорости потока, но при некоторой достаточно высокой скорости эта сила скачком уменьшается с тем, чтобы с дальнейшим увеличением скорости снова возрасти. Что же произошло, обусловив уменьшение силы сопротивления? Математическое моделирование позволяет получить четкий ответ: в момент скачкообразного уменьшения сопротивления вихри, образующиеся в потоке жидкости или газа позади обтекаемого тела, начинают отрываться от него и уноситься потоком.

Пример совсем из другой области: мирно сосуществовавшие со стабильными численностями популяции двух видов особей, имеющих общую кормовую базу, «вдруг» начинают резко менять численность - и здесь математическое моделирование позволяет (с известной долен достоверности) установить причину (или, по крайней мере, опровергнуть определенную гипотезу).

 

Рис. 7.1. Общая схема процесса компьютерного математического моделирования

 

Выработка концепции управления объектом -другая возможная цель моделирования. Какой режим полета самолета выбрать для того, чтобы полет был вполне безопасным и экономически наиболее выгодным? Как составить график выполнения сотен видов работ на строительстве большого объекта, чтобы оно закончилось в максимально короткий срок? Множество таких проблем систематически возникает перед экономистами, конструкторами, учеными.

Наконец, прогнозирование последствий тех или иных воздействий на объект может быть как относительно простым делом в несложных физических системах, так и чрезвычайно сложным - на грани выполнимости - в системах биолого-экономических, социальных. Если относительно легко ответить на вопрос об изменении режима распространения тепла в тонком стержне при изменениях в составляющем его сплаве, то несравненно труднее проследить (предсказать) экологические и климатические последствия строительства крупной ГЭС или социальные последствия изменений налогового законодательства. Возможно, и здесь методы математического моделирования будут оказывать в будущем более значительною помощь.

Составим список величин, от которых зависит поведение объекта или ход процесса, а также тех величин, которые желательно получить в результате моделирования. Обозначим первые (входные) величины через х1, x2, .... хn; вторые (выходные) через y1,y2, … ,yk. Символически поведение объекта или процесса можно представить в виде

 

уj = Fj (x1, х2,....xn) (j=1,2,..., k), (7.1)

 

где Fj - те действия, которые следует произвести над входными параметрами, чтобы получить результаты. Хотя запись F (x1, x2, ..., хn) напоминает о функции, мы здесь используем ее в более широком смысле. Лишь в простейших ситуациях F(x) есть функция в том смысле, который вкладывается в это понятие в учебниках математики; чтобы это подчеркнуть, лучше использовать по отношению к F(x) термин «оператор».

Входные параметры xi могут быть известны «точно», т.е. поддаваться (по крайней мере, в принципе) измерению однозначно и с любой степенью точности - тогда они являются детерминированными величинами. Так, в классической механике, сколь сложной ни была бы моделируемая система, входные параметры детерминированы - соответственно, детерминирован, однозначно развивается во времени процесс эволюции такой системы. Однако, в природе и обществе гораздо чаще встречаются процессы иного рода, когда значения входных параметров известны лишь с определенной степенью вероятности, т.е. эти параметры являются вероятностными (стохастическими), и, соответственно, таким же является процесс эволюции системы (случайный процесс).

«Случайный» - не значит «непредсказуемый»; просто характер исследования, задаваемых вопросов резко меняется (они приобретают вид «С какой вероятностью...», «С каким математическим ожиданием...» и т.п.). Примеров случайных процессов не счесть как в науке, так и в обыденной жизни (силы, действующие на летящий самолет в ветренную погоду, переход улицы при большом потоке транспорта и т.д.).

Для стохастической модели выходные параметры могут быть как величинами вероятностными, так и однозначно определяемыми. Пример последнего: на перекрестке улиц можно ожидать зеленого сигнала светофора и полминуты, и две минуты (с разной вероятностью), но среднее время ожидания есть величина вполне определенная, и именно она может быть объектом моделирования.

Важнейшим этапом моделирования является разделение входных параметров по степени важности влияния их изменений на выходные. Такой процесс называется ранжированием (разделением по рангам). Чаще всего невозможно (да и не нужно) учитывать все факторы, которые могут повлиять на значения интересующих нас величин yj. От того, насколько умело выделены важнейшие факторы, зависит успех моделирования, быстрота и эффективное гь достижения цели. Выделить более важные (или, как говорят, значимые) факторы и отсеять менее важные может лишь специалист в той предметной области, к которой относится модель. Так, опытный учитель знает, что на успех контрольной работы влияет степень знания предмета и психологический настрой класса; однако, влияют и другие факторы - например, каким уроком по счету идет контрольная, какова в этот момент погода и т.д. -фактически проведено ранжирование.

Отбрасывание (по крайней мере при первом подходе) менее значимых факторов огрубляет объект моделирования и способствует пониманию его главных свойств и закономерностей. Умело ранжированная модель должна быть адекватна исходному объекту или процессу в отношении целей моделирования. Обычно определить адекватна ли модель можно только в процессе экспериментов с ней, анализа результатов.

На рис. 7.2 проиллюстрированы две крайние ситуации: а) некоторый параметр х, очень сильно влияет на результирующую величину yj, б) почти не влияет на нее. Ясно, что если все представляющие интерес величины уj реагируют на хi так, как изображено на рис. 7.2, б, то хi является параметром, который при первом подходе может быть из модели исключен; если же хотя бы одна из величин уj реагирует на изменение xi так, как изображено на рис. 7.2, а, то хi нельзя исключать из числа важнейших параметров.

Следующий этап - поиск математического описания. На этом этапе необходимо перейти от абстрактной формулировки модели к формулировке, имеющей конкретное математическое наполнение. В этот момент модель предстает перед нами в виде уравнения, системы уравнений, системы неравенств, дифференциального уравнения или системы таких уравнений и т.д.

 

Рис. 7.2. Варианты степени влияния величины х, на результирующую величину yi

 

Когда математическая модель сформулирована, выбираем метод ее исследования. Как правило, для решения одной и той же задачи есть несколько конкретных методов, различающихся эффективностью, устойчивостью и т.д. От верного выбора метода часто зависит успех всего процесса.

Разработка алгоритма и составление программы для ЭВМ - это творческий и трудно формализуемый процесс. В настоящее время при компьютерном математическом моделировании наиболее распространенными являются приемы процедурно-ориентированного (структурного) программирования, описанные в главе 3. Из языков программирования многие профессионалы-физики, например, до сих пор предпочитают FORTRAN как в силу традиций, так и в силу непревзойденной эффективности компиляторов (для расчетных работ) и наличия написанных на нем огромных, тщательно отлаженных и оптимизированных библиотек стандартных программ математической ориентации. В ходу и такие языки, как PASCAL, BASIC, С - в зависимости от характера задачи и склонностей программиста.

После составления программы решаем с ее помощью простейшую тестовую задачу (желательно, с заранее известным ответом) с целью устранения грубых ошибок. Это -лишь начало процедуры тестирования, которую трудно описать формально исчерпывающим образом. По существу, тестирование может продолжаться долго и закончиться тогда, когда пользователь по своим профессиональным признакам сочтет программу верной. Программистский фольклор полон историй об ошибках на этом пути.

Затем следует собственно численный эксперимент, и выясняется, соответствует ли модель реальному объекту (процессу). Модель адекватна реальному процессу, если некоторые характеристики процесса, полученные на ЭВМ, совпадают с экспериментальными с заданной степенью точности. В случае несоответствия модели реальному процессу возвращаемся к одному из предыдущих этапов.

 



Дата добавления: 2020-02-05; просмотров: 621;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.012 сек.