Резонансные явления в цепях синусоидального тока
Резонансными режимами в цепях синусоидального тока называются такие режимы, при которых сдвиг фаз φ между напряжением на участке цепи и током равен нулю.
В цепи с последовательным соединением элементов R, L, C (рис. 2.26) сдвиг фаз между напряжением на зажимах участка цепи и током определяется через сопротивления этого участка цепи:
.
При равенстве реактивных сопротивлений он становится равным нулю. Напряжения на индуктивном и емкостном элементах равны между собой, поэтому резонанс в рассматриваемой цепи называют резонансом напряжений. Входное напряжение при этом равно напряжению на активном сопротивлении.
Из условия возникновения резонансного режима следует способ его достижения. Резонанс напряжений в цепи можно получить путем изменения одной из трех величин при постоянстве двух других:
1) f=var, L=const, C=const;
2) f=const, L= var, C=const;
3) f=const, L=const, C= var.
Характеристики, показывающие изменение напряжений, токов и других величин при изменении одного из параметров, называются резонансными характеристиками.
Рассмотрим резонансные кривые тока I(ω), напряжений на индуктивности и емкости UL(ω) и UC(ω) и угла сдвига фаз φ(ω) (рис. 2.27).
Ток в цепи
При значении частоты ω=0 емкостное сопротивление ХС равно бесконечности и ток в цепи равен нулю. Далее с увеличением частоты емкостное сопротивление уменьшается, а индуктивное увеличивается и ток возрастает до максимального значения при резонансе Ip=U/R. При дальнейшем увеличении частоты ток уменьшается и при ω→∞, когда индуктивное сопротивление стремится к бесконечности, он стремится к нулю.
напряжение на индуктивности определяется и своей формой напоминает кривую зависимости тока I(ω).
При ω=0 напряжение на емкости равно сетевому напряжению U, так как сопротивление конденсатора равно бесконечности, ток в цепи отсутствует, и все входное напряжение приложено к месту разрыва. При ω=ωр напряжение емкостное равно напряжению индуктивному. При ω→∞ напряжение емкостного элемента стремится к нулю.
В резонансной цепи комплексное сопротивление равно активному сопротивлению и имеет минимальное значение Z=R=min. Ток в такой цепи, как было показано выше, будет иметь максимальное значение: IР =U/Z=U/R= Imax. В случае если реактивные сопротивления по величине гораздо больше активного сопротивления , в режиме резонанса напряжения на индуктивности и емкости могут во много раз превышать входное напряжение:
.
Соотношение напряжений в резонансном режиме определяется величиной добротности Q контура, величина которой определяется исходя из следующих соображений:
,
где Q – добротность цепи, состоящей из последовательно соединенных элементов R, L, C , значение которой может достигать десятков и сотен единиц.
При изменении частоты от 0 до ωр угол сдвига фаз φ между напряжением и током изменяется от (-π/2) до 0. При изменении частоты ω до ∞ угол φ возрастает от 0 до π/2.
При параллельном соединении элементов R, L, C в цепи (рис. 2.28) наблюдается резонанс токов. Угол сдвига фаз между входным напряжением и током в цепи при параллельном соединении приемников определяется
.
При равенстве реактивных составляющих проводимостей: или угол сдвига фаз будет равен нулю, что и будет являться условием резонанса токов, при котором, равны реактивные составляющие токов индуктивного и емкостного элементов, входной ток равен току активного элемента и имеет минимальное значение.
Резонансные характеристики для режима резонанса токов построены на рис. 2.29.
Входной ток цепи определяется согласно первому закону Кирхгофа:
Ток резистора от частоты питающего напряжения не зависит и будет всегда неизменным.
При частоте равной нулю конденсатор представляет
собой разомкнутый участок цепи и его ток равен нулю, а ток идеальной катушки стремится к бесконечности, так как катушки представляет собой короткозамкнутый участок. Входной ток при этом равен току катушки и стремится к бесконечности.
При резонансной частоте ωрез действующие значения емкостного и индуктивного токов равны. Эти токи находятся в противофазе и их векторная сумма равна нулю, входной ток равен току активного элемента и имеет минимальное значение.
При частоте стремящейся к бесконечности проводимость емкостного элемента стремится к бесконечности, а проводимость индуктивного элемента - к нулю. Входной ток становится практически равным току конденсатора и также стремится к бесконечности.
При частотах меньше резонансной ω<ωрез угол сдвига фаз больше нуля φ>0, преобладает индуктивная составляющая проводимости. При частоте равной резонансной ω=ωрез реактивные составляющие проводимостей равны и угол сдвига фаз равен нулю φ=0. При частотах больше резонансной ω>ωрез угол сдвига фаз меньше нуля φ<0 и стремится к значению -π/2, преобладает емкостная составляющая проводимости.
Дата добавления: 2016-06-09; просмотров: 3445;