Непараметрические критерии
Критерии, не включающие в формулу расчета параметров распределения и основанные на оперировании частотами или рангами (критерий Q Розенбаума, критерий Т Вилкоксона и др.)
И те, и другие критерии имеют свои преимущества и недостатки. На основании нескольких руководств можно составить таблицу, позволяющую оценить возможности и ограничения тех и других (Рунион Р., 1982; McCall R., 1970; J.Greene, M.D'Olivera, 1989).
Таблица 1.1
Возможности и ограничения параметрических и непараметрических критериев
ПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ | НЕПАРАМЕТРИЧЕСКИЕ КРИТЕРИИ |
1. Позволяют прямо оценить различи* в средних, полученных в двух выборках (t - критерий Стьюдента). | Позволяют оценить лишь средние тенденции, например, ответить на вопрос, чаще ли в выборке А встречаются более высокие, а в выборке Б - более низкие значения признака (критерии Q, U, φ* и др.). |
2. Позволяют прямо оценить различия в дисперсиях (критерий Фишера). | Позволяют оценить лишь различия в диапазонах вариативности признака (критерий φ*). |
3. Позволяют выявить тенденции изме-нения признака при переходе от условия к условию (дисперсионный однофакторный анализ), но лишь при условии нормального распределения признака. | Позволяют выявить тенденции изменения признака при переходе от условия к условию при любом распределении признака (критерии тенденций L и S). |
4. Позволяют оценить взаимодействие двух и более факторов в их влиянии на изменения признака (двухфакторный дисперсионный анализ). | Эта возможность отсутствует. |
5. Экспериментальные данные должны отвечать двум, а иногда трем, условиям: а) значения признака измерены по интервальной шкале; б) распределение признака является нормальным; в) в дисперсионном анализе должно соблюдаться требование равенства дисперсий в ячейках комплекса. | Экспериментальные данные могут не отвечать ни одному из этих условий: а) значения признака могут быть представлены в любой шкале, начиная от шкалы наименований; б) распределение признака может быть любым и совпадение его с каким-либо теоретическим законом распределения необязательно и не нуждается в проверке; в) требование равенства дисперсий отсутствует. |
6. Математические расчеты довольно сложны. | Математические расчеты по большей части просты и занимают мало времени (за исключением критериев χ2и λ). |
7. Если условия, перечисленные в п.5, выполняются, параметрические критерии оказываются несколько более мощными, чем непараметрические. | Если условия, перечисленные в п.5, не выполняются, непараметрические критерии оказываются более мощными, чем параметрические, так как они менее чувствительны к "засорениям'. |
Из Табл. 1.1 мы видим, что параметрические критерии могут оказаться несколько более мощными[4], чем непараметрические, но только в том случае, если признак измерен по интервальной шкале и нормально распределен. С интервальной шкалой есть определенные проблемы (см. раздел "Шкалы измерения"). Лишь с некоторой натяжкой мы можем считать данные, представленные не в стандартизованных оценках, как интервальные. Кроме того, проверка распределения "на нормальность" требует достаточно сложных расчетов, результат которых заранее неизвестен (см. параграф 7.2). Может оказаться, что распределение признака отличается от нормального, и нам так или иначе все равно придется обратиться к непараметрическим критериям.
Непараметрические критерии лишены всех этих ограничений и нетребуют таких длительных и сложных расчетов. По сравнению с параметрическими критериями они ограничены лишь в одном - с их помощью невозможно оценить взаимодействие двух или более условий или факторов, влияющих на изменение признака. Эту задачу может решить только дисперсионный двухфакторный анализ.
Учитывая это, в настоящее руководство включены в основном непараметрические статистические критерии. В сумме они охватывают большую часть возможных задач сопоставления данных.
Единственный параметрический метод, включенный в руководство - метод дисперсионного анализа, двухфакторный вариант которого ничем невозможно заменить.
Дата добавления: 2016-06-05; просмотров: 2152;