Экспоненциальный закон распределения.


В различных приложениях теории вероятностей, особенно в теории массового обслуживания, исследовании операций, в физике и т.д. широко применяется экспоненциальное (показательное) распределение.

Время занятости канала связи, время безотказной работы ЭВМ, продолжительность поиска чего–либо – все это экспоненциально распределенные случайные величины.

Неотрицательная величина X называется распределенной по экспоненциальному закону, если ее плотность распределения имеет вид

,

где - параметр экспоненциального распределения.

График плотности распределения изображен на рис. 13.

Рисунок 13 График плотности вероятности экспоненциально распределенной случайной величины

 

Определим основные числовые характеристики этого распределения:

,

т.е. математическое ожидание есть величина обратная параметру закона. Для отыскания дисперсии используем формулу

. Откуда средне – квадратичное отклонение будет равно

.

Вероятность попадания случайной величины на заданный участок, распределенной экспоненциально можно рассчитать, используя формулу

.

 



Дата добавления: 2021-11-16; просмотров: 308;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.007 сек.