Виды ленточных фундаментов и технология их устройства


3. Конструкции забивных свай и шпунта

Технология устройства фундаментов. Общие положения

Промышленные здания и сооружения передают нагрузку от своей массы, включая полезную нагрузку, через фундаменты на грунтовое основание. Исходя из несущей способности основания и действующей на него нагрузки, конструктивное решение фундаментов может быть различным.

Для большинства малоэтажных гражданских и промышленных зда­ний подходят ленточные фундаменты. Ленточные фундаменты отно­сятся к фундаментам мелкого заложения, передающим нагрузку на грунты основания, преимущественно через подошву. Такие фундамен­ты возводят в открытых котлованах. По условиям изготовления их подразделяют на монолитные, сооружаемые непосредственно в котло­ване, и сборные, монтируемые из элементов заводского изготовления.

Ленточные фундаменты используют для передачи нагрузки на ос­нование от стен зданий или ряда колонн. В плане они могут состоять из одинарных и перекрестных лент; первые обычно устраивают под стены, а перекрестные - под сетку колонн. Для одноэтажных зданий, включая промышленные, вместо сплошных фундаментов часто приме­няют столбчатые, которые через колонны (стойки) воспринимают на­грузку от каркаса здания и через ранд-балки (обвязочные балки) - на­грузки от стенового ограждения.

Значительное заглубление ленточных фундаментов, близкое взаим­ное расположение несущих стен вынуждают разрабатывать котлованы под всей площадью здания. Обычно разрабатываемый грунт нужно увозить с площадки в отвал и привозить грунт для обратной засыпки пазух.

В грунтах со слабой несущей способностью глубина заложения фундаментов значительно увеличивается, а это заставляет устраивать ленточные фундаменты с развитой опорной частью, что приводит к резкому увеличению расхода бетона.

Переход к строительству многоэтажных зданий привел к увеличе­нию нагрузок на основания, что потребовало найти новое конструк­тивное решение фундаментов, способных воспринимать повышенные нагрузки или использовать свайные фундаменты. Сваи применяют для устройства фундаментов под различные здания и сооружения, повы­шения несущей способности слабых грунтов, шпунтовые сваи - для укрепления стенок котлованов от обрушения.

Применение свайных фундаментов вместо сборных ленточных фундаментов позволяет резко сократить объем земляных работ, уменьшить объем монолитного или сборного железобетона на уст­ройство фундаментов и стен подвала, сократить сроки работ и стои­мость устройства фундаментов. Свайные фундаменты, в отличие от ленточных, характеризуются меньшими по величине и более равно­мерными осадками.

Для зданий повышенной этажности, при ослабленных грунтах, раз­ной несущей способности основания под различными частями возво­димого сооружения и других техногенных факторах в качестве фунда­мента устраивают монолитную плиту (сплошной фундамент) под всем сооружением. Фундаментные плиты разрезаются в плане только оса­дочными швами, плиты обеспечивают жесткость здания и совместную работу фундамента и надземной части сооружения. Сплошные фунда­менты резко снижают неравномерность осадки отдельных частей со­оружения.

2. Виды ленточных фундаментов и технология их устройства

Монолитные ленточные фундаменты. Ленточные фундаменты под стены устраивают в основном монолитными или из сборных бло­ков. Монолитные железобетонные ленточные фундаменты выполня­ют в виде нижней армированной ленты и неармированной или мало армированной фундаментной стены, выше которой устраивают стены здания.

Процесс возведения фундаментов и стен из монолитного железобе­тона включает разбивку осей фундаментов, устройство опалубки, сборку и установку арматуры и бетонирование. Выбор технологии воз­ведения фундаментов зависит от конструктивных решений фундамен­тов и самих зданий, а также от имеющегося технологического обору­дования и механизмов.

На выбор типа опалубки влияет вид бетонируемых конструкций и их повторяемость. Выбирают опалубку на основе технико-эконо­мических расчетов по возможным вариантам. Определяющие пока­затели - затраты материалов и труда, себестоимость одного оборота опалубки.

При большой повторяемости фундаментов небольшого объема и простой формы применяют инвентарные металлические блок-формы, устанавливаемые на место краном. Блок-формы могут изготавливаться неразъемными, разъемными, и трансформируемыми; последние изме­няют свои размеры и форму путем раздвижки с последующей фикса­цией элементов специальными устройствами. В отдельных случаях мо­жет применяться стальная инвентарная опалубка из пространственных блоков или крупных щитов, несъемная опалубка из плоских или про­странственных железобетонных элементов, мелко- и крупнощитовая опалубка с палубой из водостойкой фанеры.

Монтаж арматуры выполняют укрупненными элементами в виде сеток и пространственных каркасов. Нижнюю арматурную сетку фун­дамента устанавливают до монтажа опалубки. Для создания защитного слоя бетона устанавливают фиксаторы в шахматном порядке с шагом 1 м. Далее устанавливают арматурные каркасы и закрепляют их с по­мощью фиксаторов. Временные крепления с каркасов снимают после их приварки к сетке подошвы фундамента. Отдельные стержни сеток и каркасов на месте их установки необходимо соединить на сварке. По завершении опалубочных работ на захватке приступают к установке опалубки.

Опалубку ленточных фундаментов постоянного поперечного сече­ния собирают в зависимости от высоты фундамента. При высоте 2...2,5 м щиты устанавливают последовательно вертикально, соединяя их между собой на замках, временно раскрепляют инвентарными, под­косами. К ним присоединяют схватки, а затем опалубочные плоскости соединяют стяжками. Щиты второго яруса закрепляют на нижних по­сле рихтовки установленной опалубки и располагают их горизонталь­но. При высоте ленточного фундамента более 2,5 м конструктивное решение опалубки должно быть предложено в технологической карте.

Щитовая опалубка ленточных фундаментов переменного попереч­ного сечения может сначала собираться для нижней части фундамента в виде плиты, верхняя часть опалубки может быть установлена до и после бетонирования нижней части фундамента.

Перед укладкой бетонной смеси необходимо тщательно подгото­вить грунтовое основание. Рыхлые, органические и подобные грунты должны быть удалены, места перекопки грунта следует заполнить уп­лотненным песком или щебнем,

Для достижения монолитности железобетонных фундаментов бето­нирование необходимо вести непрерывно, не допуская образования швов. Бетонную смесь укладывают слоями толщиной 20...30 см, каж­дый последующий слой укладывают после уплотнения предыдущего и, как правило, до начала его схватывания.

Ленточные фундаменты бетонируют в зависимости от конструк­тивных особенностей в один, два и три этапа (рис. 4.1).

Одноэтапное послойное бетонирование применяется при устройстве ленточных фундаментов прямоугольного сечения в распор или переменного сече­ния при площади поперечного сечения менее 3 м2. Ленточные фунда­менты со ступенями при площади поперечного сечения более 3 м бе­тонируют в два этапа: сначала ступени, затем стену. В три этапа бето­нируют ленточные фундаменты с подколонниками, применяемые в каркасных зданиях.

Рис. 4.1. Бетонирование ленточных фундаментов:

а - столбчатого при непрерывной подаче бетонной смеси; б - то же, бетонируемого ступенями, в -ступенчатого бетонируемого с использованием виброхобота; г - конструктивное решение фундамента; 1- опалубка фундамента; 2 - бадья с бетонной смесью; 3 - рабочая площадка; 4 - вибра­тор; 5-бетон; 6 - звеньевой хобот; 7 - продольное армирование; 8 - поперечная арматура, 9 -бетонная подготовка; 10 - уплотненный грунт; 11- оклеечная гидроизоляция

 

Особенности бетонирования стен подземной части здания зависят от толщины и высоты стен, а также от вида опалубки. Разборно-переставную щитовую опалубку устанавливают в два приема: вначале с одной стороны на всю высоту стены, а после установки арматуры -с другой. При большой высоте и толщине стены опалубку второй сто­роны устанавливают поярусно в процессе бетонирования. Если опа­лубку устанавливают на всю высоту стены, то в опалубке предусмат­ривают отверстия для подачи бетонной смеси. Опалубку стен толщи­ной более 0,5 м можно возводить на всю высоту стены с подачей бе­тонной смеси сверху с помощью хоботов.

Технология бетонирования стен зависит от конструкции опалубки. Может быть предусмотрена поярусная укладка бетонной смеси на вы­соту 400...600 мм при высоте яруса наращиваемой опалубки в тех же пределах. При бетонировании стен в разборно-переставной опалубке высота участков, выполняемых без перерыва, не должна превышать 3 м. При большей высоте участков стен, бетонируемых без рабочих швов, необходимо устанавливать перерывы в бетонировании продолжитель­ностью 40... 120 мин для осадки бетонной смеси и предупреждения об­разования осадочных трещин.

При длине стены более 20 м ее делят на участки по 7... 10 м и на границе участков устанавливают разделительную перегородку.

Ведущим процессом при устройстве фундаментов является бетони­рование, поэтому количество рабочих в каждом потоке (установка опа­лубки, укладка арматуры, бетонирование, разборка опалубки) опреде­ляется по ведущему потоку. Необходимо, чтобы работа во всех пото­ках шла в одном ритме. Для организации поточной работы фундамен­ты и стены разбивают на захватки, в качестве которых может быть пролет, часть пролета или фундаменты на одной оси.

Сборные ленточные фундаментысостоят из сборных фундамент­ных подушек, армированных по расчету, выше которых устанавливают блоки стен. Железобетонные фундаментные плиты-подушки и бетон­ные стеновые блоки унифицированы, номенклатура предусматривает их разделение на четыре группы, каждая из которых отличается вос­принимаемой нагрузкой. Для повышения жесткости сооружения, для выравнивания осадок при строительстве на слабых грунтах и в качест­ве антисейсмических мероприятий сборные фундаменты усиливают армированными швами или железобетонными поясами, устраиваемы­ми поверх фундаментных подушек или последнего ряда стеновых фун­даментных блоков по всему периметру здания на одном уровне.

При песчаных грунтах фундаментные блоки укладывают непосред­ственно на выровненное основание, при других грунтах - на песчаную подушку толщиной 10 см. Под подошвой фундаментов нельзя остав­лять насыпной или разрыхленный грунт, его необходимо удалить и вместо него засыпать песок или щебень. Углубления в грунтовом ос­новании высотой более 10 см заполняют монолитным бетоном. Шири­ну и длину песчаного основания делают на 20...30 см больше разме­ров фундамента, чтобы блоки не свисали с песчаной подушки.

Фундаментные блоки укладывают по схеме их раскладки в соот­ветствии с проектом (рис. 4.2), чтобы обеспечить разрывы для про­кладки труб водоснабжения, канализации и других вводов.

Монтаж начинают с установки маячных блоков по углам и в мес­тах пересечения стен. Фундаментный блок подается краном к месту укладки, наводится и опускается на основание, незначительные откло­нения от проектного положения устраняют перемещая блок монтаж­ным ломиком при на-тянутых стропах. При этом поверхность основания не должна быть нарушена. Стропы снимают после того, как блок займет правильное положение в плане и по высоте. Разрывы между блоками ленточного фундамента и боковыми пазухами в процессе монтажа заполняют песком или песчаным грунтом и уплотняют.

Рис. 4.2. Монтаж сборных ленточных фундаментов: 1 - фундаментная подушка; 2 - стеновой блок; 3 — песчаная подготовка; 4 - арматурный пояс; 5 - постель из раствора; 6 - заделка стыка мо-нолитным бетоном; 7 — строповка блока При монтаже фундаментов под колонны тщательно контролируют положение устанавливаемых блоков относительно основных осей. С помощью нивелиров контролируют положение блоков по высоте, у блоков стаканного типа проверяют отметку дна стакана, у других -верхней плоскости блока. Монтаж стен подвала (стеновых блоков) начинают после проверки положения уложенных фундаментных блоков (подушек) и устройства гидроизоляции. Если в проекте отсутствуют особые указания, то в ка­честве изоляции расстилают слой раствора толщиной 2...3 см по очи­щенной поверхности фундаментов; раствор одновременно служит вы­равнивающим слоем.

В соответствии с монтажной схемой на фундаментах размечают положение стеновых блоков первого (нижнего ряда), отмечая места вертикальных швов. Монтаж начинают с установки маячных блоков в углах и местах пересечения стен на расстоянии 20...30 м друг от друга. После установки маячных блоков на уровне их верха натягива­ют шнур - причалку, по которому устанавливают рядовые блоки.

Последующие ряды блоков монтируют в той же последовательно­сти, размечая раскладку блоков на нижележащем ряду. Первые два ряда блоков устанавливают с уложенных фундаментных блоков, по­следующие - с инвентарных подмостей. Марка раствора, на котором должны монтироваться блоки, указывается в проекте.

Монтажный кран можно располагать на бровке котлована, тогда в пределах захватки сначала монтируют все фундаментные блоки, а затем блоки стен подвала. Если кран находится в котловане, то фун­даменты и стены подвала устанавливают отдельными участками, исхо дя из того, что монтажный кран не сможет вторично войти в зону, где уже уложены блоки выше уровне земли.

Рис. 4.3. Схема устройства фундамент­ной плиты: 1 - границы фундаментной плиты по высоте, 2 - продольная арматура; 3 - то же, попе­речная; 4 — оклеенная гидроизоляция; 5 - бе­тонная подготовка; б - уплотненный грунт Сплошные фундаменты (монолитная плита) изготовляют из моно­литного железобетона, по конструктивному решению они могут быть выполнены в виде гладкой плиты (с устанавливаемыми по необходи­мости сборными стаканами под колонны), гладкой плиты с монолит­ными стаканами (рис. 4.3), ребристой плиты и плиты коробчатого сечения. Фундаментные плиты, днища резервуаров, туннелей и т. д. имеют большие площади и характеризуются насыщенным армированием. Толщина таких плит колеблется от 0,2

до 2 м. Способы их бетонирования выбирают с учетом размеров в плане, толщины, степени арми­рования, имеющейся механизации производства работ, реальных объемов поставки бетонной смеси.

Фундаментные плиты армируют сварными сетками в два слоя и более. Арматурные каркасы могут быть образованы разными спосо­бами: укладывают горизонтальные сетки и устанавливают поддержи­вающие каркасы или предварительно объединяют плоские горизон­тальные сетки и поддерживающие каркасы в пространственный самонесущий армоблок. Армоблоки устанавливают с зазорами, которые пе­рекрывают одним или двумя рядами плоских горизонтальных сеток, опирающихся на армоблоки.

Массивные фундаментные плиты бетонируют с использованием несъемной железобетонной опалубки, разборно-переставной из унифи­цированных элементов. Опалубочные панели большой площади, а так­же арматурные каркасные блоки монтируют с помощью монтажных кранов. Крепление опалубки и каркасов должно быть надежным и выдерживать технологические нагрузки от бетонной смеси, механизмов, машин, рабочих и инвентарных приспособлений. Приготовленная к производству работ опалубка должна быть сдана по акту.

При большой площади плит их разбивают на блоки бетонирова­ния или карты. По краям карт устанавливают деревянную или сетча­тую опалубку без разрезки арматуры на границах карт. В качестве наружной и внутренней опалубок наиболее целесообразно использо­вать стальную сетку из проволоки диаметром 0,7 мм с ячейкой 5x5 см. Такую сетку крепят к арматуре плиты вязальной проволокой или за­жимами.

Ширину блоков принимают с учетом условий непрерывности бето­нирования и темпа подачи бетонной смеси. В каждом блоке бетониро­вания необходимо обеспечить зоны работ: приемки и предварительно­го разравнивания и уплотнения. Необходимая скорость бетонирования определяется из условия, что ранее уложенная порция бетонной смеси перекрывается последующей с соответствующим виброуплотнением до начала схватывания бетона в обеих зонах. Принимаемая скорость бетонирования должна быть обеспечена наличием в достаточном коли­честве средств уплотнения бетонной смеси.

Если толщина плиты меньше 0,5 м, разбивку плиты на карты и бе­тонирование ведут так же, как и бетонной подготовки под полы, т. е. бетонируют картами шириной по 3...4 м. При большей толщине пли­ты разбивают на параллельные карты шириной 5... 10 м, при этом ме­жду ними оставляют разделительные полосы шириной 1... 1,5 м.

Фронт бетонирования в пределах карты должен быть минималь­ным. Карты бетонируют подряд, т. е. одну за другой; для уменьшения суммарной усадки бетон в разделительные полосы укладывают в рас­пор с затвердевшим бетоном готовых карт после снятия опалубки на их границах.

Бетонную смесь с осадкой конуса 2...6 см подают на карты бето­нонасосами, с помощью бетоноукладчиков, эстакад, а также в бадьях с помощью кранов. В отдельных случаях бетонирование может осуще­ствляться пневмотранспортом, с помощью виброхоботов, ленточными конвейерами и непосредственно из транспортных средств. Подавать смесь необходимо в направлении к ранее уложенному бетону, как бы прижимая новые порции бетона к ранее уложенным. При сосредото­ченных объемах работ в массиве и темпе бетонирования 50..100 м3/смену могут быть использованы стационарные бетононасосы Плиты даже предельной толщины бетонируют в один слой. При этом несколько затрудняется виброуплотнение, поскольку внутренние вибраторы требуется погружать в смесь на глубину, в 1,5...2 раза превышающую длину рабочей части. Для виброуплотнения таких конструкций целесообразно применять навесные вибраторы и вибропакеты.

Бетонирование необходимо организовать так, чтобы избежать уст­ройства рабочих швов в пределах одной карты бетонирования.

Вырав­нивают бетон плит по маякам, поверхность заглаживают гладилками. В местах примыкания стен, опирания колонн и столбов поверхность бетона оставляют шероховатой.

Работы по устройству монолитных фундаментных плит целесооб­разно выполнять по поточной организации работ с разбивкой на три ведущих потока: армирование фундаментов, установка опалубки, включая сетчатую на границе зон бетонирования, и непосредственное бетонирование. Работы должны выполняться в одном ритме. Ведущим потоком является бетонирование, поэтому число рабочих в каждом по­токе рассчитывают, исходя из обеспечения непрерывной работы бе­тонщиков.

3. Конструкции забивных свай и шпунта

Сваи подразделяют по целому ряду признаков на несколько групп (рис. 4.4):

по материалу - деревянные, металлические, бетонные и железобе­тонные, комбинированные, грунтовые;

по конструкции - квадратные, трубчатые, прямоугольные и много­угольные, с уширением и без него, цельные и составные, призматиче­ские и конические, сплошного сечения и пустотелые, винтовые и сваи-колонны;

по способу устройства - забивные, изготовляемые на заводе или на самой площадке и погружаемые в грунт, и набивные, устраиваемые непосредственно в грунте (в заранее пробуренной скважине);

по характеру работы (по способу передачи нагрузки на основа­ние) - сваи-стойки, которые передают нагрузку от здания своими кон­цами на скальный или практически несжимаемый грунт, и висячие сваи, передающие нагрузку за счет трения грунта по боковой поверх­ности сваи;

по виду воспринимаемой нагрузки - центральная, вертикально действующая нагрузка, нагрузка с эксцентриситетом, и усилия вы­дергивания;

по виду армирования железобетонных свай - с напрягаемой и ненапрягаемой продольной арматурой, с поперечным армированием и без него.

Свайный куст - несколько рядом расположенных свай, совместно воспринимающих общую нагрузку; ростверк - конструкция, объеди­няющая сверху сваи для их совместной работы.

Деревянные сваи изготовляют из древесины сосны, ели, лиственни­цы, кедра, пихты, дуба. Длина свай 4... 12 м, диаметр в тонком конце 18...34 см. В нижнем конце свая заострена на 3...4 грани, острие долж­но совпадать с осью сваи, отклоненное от оси острие может увести сваю при забивке от проектного положения. При забивке в плотные грунты и предохранения острия от разрушения на него надевают ме­таллический башмак - наконечник, а на верхнюю часть – железное кольцо-бугель, предохраняющий голову сваи от разрушения (размоча­ливания) при забивке.

Рис. 4.4. Классификация свай по конструктивным признакам

 

 

Когда требуются длинные сваи (> 12 м), их сплачивают из не­скольких бревен - в торец, вполдерева или накладками. Для предо­хранения свай от гниения их пропитывают антисептиками или погру­жают так, чтобы вся свая располагалась ниже самого низкого уровня грунтовых вод.

Деревянные шпунты изготовляют из брусьев, на одной грани уст­раивают гребень, на другой - паз, преимущественно прямоугольного сечения. Перед забивкой шпунтины соединяют по 2...3 шт. в пакет, де­лают общий скос на острие и надевают общий бугель. Обычно толщина шпунтин 5..14 см, но может доходить до 26 см.

Металлические сваи применяют в портовом, мостовом, энергетиче­ском и промышленном строительстве, при возведении высотных со­оружений (радиомачт, телебашен). Используют стальные трубы диа­метром 25... 100 см, рельсы, двутавры, винтовые сваи со специальным наконечником, завинчиваемые в грунт.

Сваи-оболочки - металлические трубчатые сваи диаметром 1.2...2 м и более, длиной до 14 м, при необходимости их наращивают и соединя­ют на сварке. Сваи с открытым нижним торцом по мере заглубления заполняют грунтом, который, уплотняясь, увеличивает несущую спо­собность сваи. Сваи-оболочки с закрытым нижним торцом в виде съемного наконечника забивают в грунт. Металлический наконечник всегда остается в грунте, сама свая может быть оставлена и заполнена бетонной смесью для повышения несущей способности или извлечена. В процессе извлечения сваи-оболочки ее полость заполняется бетон­ной смесью.

Стальной шпунт применяют для устройства водонепроницаемых стенок котлованов, подпорных стенок, пирсов, набережных. Для шпун­та выпускают специальные профили - плоские, корытообразные, зет-образные длиной до 30 м, в отдельных случаях используют обычный стальной прокат.

Железобетонные сваи выпускают сечением от 20 х. 20 до 60х60 см и длиной от 3 до 16 м с обычной и предварительно напряженной ар­матурой. Предварительное напряжение позволяет сократить расход бе­тона на 15...20%, металла до 50...60% по сравнению с обычным арми­рованием. Армирование необходимо для транспортирования и забивки свай, для нормальной работы на сжатие достаточно косвенного арми­рования. Предварительное напряжение при забивке препятствует воз­никновению деформаций, трещин, стягивает имеющиеся трещины.

Полые сваи квадратного и трубчатого сечения длиной 2...6 м при­меняют в плотных грунтах и малых нагрузках от строящегося соору­жения, наружный диаметр может доходить до 80 см.

Устройство свайных фундаментов является комплексным процес­сом, включающим на примере метода забивки:

■ подготовку территории для ведения работ;

■ геодезическую разбивку с выносом в натуру положения каждой сваи;

■ доставку на стройплощадку, монтаж, наладку и опробование оборудования для погружения свай;

■ транспортировку готовых свай от места их изготовления к месту их погружения;

■ забивку свай;

■ срезку готовых свай по заданной отметке;

■ вывоз со строительной площадки срезанных остатков свай;

■ устройство монолитного или сборного ростверка;

■ демонтаж оборудования.

Анализ грунтов, их несущей способности показывает, что для большей части территории России плотные грунты залегают на срав­нительно небольшой глубине, что позволяет использовать сваи длиной 3...7 м.

4. Технология погружения забивных свай

С предприятий стройиндустрии сваи доставляют в готовом для по­гружения в грунт виде. В зависимости от характеристик грунта суще­ствует ряд методов устройства свай, в том числе ударный, вибрацион­ный, вдавливанием, завинчиванием, с использованием подмыва и элек­троосмоса, а также различными комбинациями этих методов.

Ударный методоснован на использовании энергии удара (воздей­ствия ударной нагрузки), под действием которой свая своей нижней заостренной частью внедряется в грунт. По мере погружения она сме­щает частицы грунта в стороны, частично вниз или наверх. В резуль­тате погружения свая вытесняет объем грунта, практически равный объему ее погруженной части. Меньшая часть этого грунта оказывает­ся на дневной поверхности, большая - смешивается с окружающим грунтом и значительно уплотняет грунтовое основание. Зона заметно­го уплотнения грунта вокруг сваи составляет 2...3 диаметра сваи.

Ударную нагрузку на оголовок сваи создают специальные меха­низмы:

паровоздушные молоты, которые приводятся в действие силой сжатого воздуха или пара, непосредственно воздействующих на удар­ную часть молота;

дизель-молоты, работа которых основана на передаче энергии сго­рающих газов ударной части молота;

вибропогружатели - передача колебательных движений рабочего органа на сваю (использование вибрации);

вибромолоты - сочетание вибрации и ударного воздействия на сваю.

Вибропогружатели и вибромолоты чаще используют при погруже­нии трубчатых свай-оболочек большого диаметра, при погружении в грунт и извлечении шпунтовых свай.

Рабочий цикл молотов всех типов состоит из двух тактов: холосто­го хода, в течение которого происходит подъем ударной части на оп­ределенную высоту, и рабочего хода, в течение которого ударная часть с большой скоростью движется вниз до момента удара по свае. В ряде свайных молотов рабочий ход происходит только под действи­ем массы ударной части, такие молоты называются молотами одиноч­ного действия.

В молотах двойного действия в точке максимального подъема ударная часть получает дополнительную энергию, на сваю действуют эта энергия и масса ударной части молота. В процессе работы молота корпус его остается неподвижным на голове погружаемой сваи, удар­ная часть молота движется внутри корпуса. Энергия сгорания не толь­ко поднимает ударную часть молота на предельную высоту, но и воз­действует на нее ударом, когда она под действием силы тяжести пада­ет вниз. Подача топлива и его возгорание в зависимости от положения ударной части выполняются автоматически.

Дизель-молоты, по сравнению с паровоздушными, отличаются бо­лее высокой производительностью, простотой в эксплуатации, авто­номностью действия и более низкой стоимостью. Автономность обес­печивается путем подъема за счет рабочего хода двухтактного дизель­ного двигателя.

На строительных площадках применяют штанговые и трубчатые дизель-молоты (рис. 4.5). Ударная часть штанговых дизель-молотов -подвижный цилиндр, открытый снизу и перемещающийся в направ­ляющих штангах.

При падении цилиндра на неподвижный поршень в камере сгорания воспламеняется смесь воздуха и топлива. Образовав­шиеся в результате сгорания смеси газы подбрасывают цилиндр вверх, после чего происходит новый удар и цикл повторяется.

В трубчатых дизель-молотах неподвижный цилиндр, имеющий пяту, является направляющей всей конструкции. Ударная часть -подвижный поршень с головкой. Воспламенение смеси происходит при ударе головки поршня по поверхности сферической впадины ци­линдра.

Главное преимущество дизель-молота трубчатого типа над штанго­вым в том, что при одинаковой массе ударной части они обладают значительно большей (в 2...3 раза) энергией удара.

Рекомендуется сле­дующее отношение массы ударной части молота к массе сваи: для штанговых молотов 1,25; для трубчатых - 0,5...0,7. Для молотов оди­ночного действия количество ударов в 1 минуту составляет 45... 100, масса ударной части до 2500 кг. Аналогично для молотов двойного действия количество ударов в 1 минуту до 300, масса ударной части до 1200 кг.

В комплект молота входит наголовник, необходимый для закрепле­ния сваи в направляющих сваебойной установки, предохранения голо­вы сваи от разрушения ударами молота и равномерного распределения удара по площади сваи. В этой связи внутренняя полость наголовника должна соответствовать очертанию и размерам головы сваи и жестко на ней быть закрепленной.

Для подъема и установки сваи в заданное положение и для за­бивки свай с обеспечением передачи усилия от молота сваи строго в вертикальном положении применяют специальные устройства -копры (рис.4.6). Основная рабочая часть копра - его стрела, вдоль которой устанавливают перед погружением молот, опускают и под­нимают его по мере забивки сваи. Наклонные сваи погружают в грунт копрами с наклонной стрелой. Копры бывают на рельсовом ходу (универсальные металлические копры башенного типа) и само­ходные - на базе кранов, тракторов, экскаваторов и автомашин со стрелой длиной 9...18 м.

Рис. 4.5. Схемы дизель-молотов: а - штангового; б - трубчатого; 1 - подвиж­ный цилиндр; 2 - направляющие штанги; 3 -поршень; 4 - подвижный поршень; 5 - го­ловка; б - неподвижный цилиндр; 7 - опор­ная часть Универсальные копры имеют значительную собственную массу до 20 т. Монтаж и демонтаж таких копров, устройство для них подкрановых путей – достаточно трудоемкие процессы, поэтому универсальные копры применяют для забивки свай длиной более 12 м при большом объеме свайных работ на объекте. Наиболее распространены в промышленном и гражданском строи­тельстве сваи длиной 6... 10 м, которые забивают с помощью самоходных сваебойных установок. Такие установки маневренны и имеют ме­ханические устройства для подтаскивания и подъема на необходимую высоту сваи, закрепления головы сваи в наголовнике, в вертикальном выравнивании стрелы со сваей перед забивкой.

Забивка свай состоит из трех основных повторяющихся операций:

■ передвижка и установка копра на место забивки сваи;

■ подъем и установка сваи в позицию для забивки;

■ забивка сваи.

Центр тяжести свайного молота должен совпадать с направлением забивки сваи. Свайный молот поднимают на высоту, достаточную для установки сваи, с некоторым запасом на ход молота и в таком положе­нии закрепляют. При забивке стальных и железобетонных свай моло­тами одиночного действия обязательно применение наголовников для смягчения удара и предохранения головы сваи от разрушения.

В процесс забивки свай входят установка сваи в проектное положе­ние, надевание наголовника, опускание молота и первые удары по свае с высоты 0,2...0,4 м, после погружения сваи на глубину 1м- переход к режиму нормальной забивки. От каждого удара свая погружается на определенную глубину, которая уменьшается по мере заглубления сваи. В дальнейшем наступает момент, когда глубина забивки сваи практически незаметна. Практически свая погружается в грунт на одну и ту же малую величину, называемую отказом.

Отказ — глубина погружения- сваи за определенное количество уда­ров обычно молота одиночного действия или за единицу времени для молотов двойного действия. Величина отказа - среднее от 10 или се­рии ударов в единицу времени.

Залог - серия ударов, выполняемых для замера средней величины отказа: для паровоздушных молотов в залоге 20...30 ударов; для ди­зель-молотов в залоге 10 ударов; для дизель-молотов двойного дейст­вия отказ определяют за 1 мин. забивки.

Замеры проводят с точностью до 1 мм, забивку прекращают при получении заданного по проекту отказа (расчетного).

Если средний от­каз в трех последовательных залогах не превышает расчетного, то про­цесс забивки сваи считается законченным.

Если при погружении свая не дошла до проектной отметки, но уже получен заданный отказ, то этот отказ может оказаться ложным, вследствие возможного перенапряжения в грунте от забивки предыдущих свай.

 

 

               
       


Рис. 4.6. Сваебойные копровые установки:

а - мостовая; б - рельсовая универсальная; в - на базе экскаватора; г-на тракторе; д - на автомобиле; 1 - кабина; 2 - копровая мачта; 3 - мост; 4 - рельсовый путь; 5 - свая; 6 – оголовник с блоками; 7 - ходовая тележка; 8 - поворотная платформа; 9 - молот; 10 - базовая машина; 11 -стрела; 12 - распорка; 13 - гидроцилиндр; 14 - выдвижной механизм; 15 - гидроцилиндр подъема и наклона стрелы; 16 - механизм подъема сваи; 17 - подвижная рама

Через 3...4 дня свая может быть пог-ружена до проектной отметки. Погружение свай вибрированием осу-ществляют с исполь-зованием вибрацион-ных механизмов, ока-зывающих на сваю динамические воз дей-ствия, которые позво-ляяют преодолеть сопротивление трения на боковых поверх-ностях сваи, лобовое сопротивление грун-та, возникающее под острием сваи, и пог-рузить сваю на проектную глубину (рис. 4.7). На скорость погружения и ампли-туду колебаний влияют масса вибр


Дата добавления: 2018-05-10; просмотров: 1261;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.046 сек.