Взаимодействие электрических зарядов в вакууме. Закон Кулона. Электрическое поле и его напряженность. Силовые линии электрического поля


Электростатика

1. Взаимодействие электрических зарядов в вакууме. Закон Кулона. Электрическое поле и его напряженность. Силовые линии электрического поля.

2. Электрический диполь. Поле диполя.

3. Теорема Остроградского-Гаусса.

4. Работа перемещения заряда в электрическом поле. Потенциал.

5. Использование электрических полей в медицине.

1. Электростатика изучает взаимодействие и условия равновесия покоящихся электрически заряженных тел, а также свойства этих тел, обусловленные электрическими зарядами.

Взаимодействие электрических зарядов осуществляется в соответствии с законом Кулона, который опытным путем установил, что два точечных заряда взаимодействуют в вакууме с силой F, пропорциональной величинам зарядов q1 и q2 и обратно пропорциональной квадрату расстояния r между ними и направленной по линии, соединяющей эти заряды:

, (1)

где k - коэффициент пропорциональности, , - электрическая постоянная. Таким образом

(2)

Электрическим полем называется вид материи, посредством которого взаимодействуют электрические заряды.

Напряженность электрического поля в данной точке есть вектор, равный по величине силе, действующей на единичный положительный заряд, помещенный в эту точку и совпадающий с ней по направлению:

(3)

Е измеряется в В/м.

Силовой линией электрического поля называется линия, в каждой точке которой касательная совпадает с вектором напряженности поля.

 

Электрическое поле называется однородным, если во всех его точках напряженность E одинакова. Напряженность электрического поля точечного заряда определяется формулой:

, (4)

где r - расстояние от заряда, создающего поле, до точки, в которой определяется напряженность.

Число силовых линий, пронизывающих некоторую поверхность, расположенную в электрическом поле, называется потоком напряженности электрического поля N через эту поверхность:

(5),

где - угол между силовой линией и нормалью n к площадке :

2. Электрический диполь. Поле диполя.

Электрическим диполем называется совокупность двух равных по величине разноименных точечных зарядов q, расположенных на некотором расстоянии друг от друга. Произведение P = ql называется моментом диполя, а l - его плечом. Дипольный момент направлен по оси диполя в сторону положительного заряда.

 

Напряженность поля на продолжении оси диполя

Напряженность поля вдоль оси диполя равна разности напряженностей Е+ и Е-, создаваемых положительным и отрицательным зарядами: Е = Е+ - Е-

Если r - расстояние от точки А до середины оси диполя, на основании (4) можно записать:

и . Тогда

Полагая, что r >> l, пренебрежем . Тогда (6)

Напряженность поля на перпендикуляре к середине оси диполя.

Напряженность Е в точке А равна Е = Е+ + Е-. Так как r+ = r- , то Е+ = Е-, Тогда Е – диагональ ромба, . Но

 

Полагая r>>l, r+ (7)

 

 

Таким образом, на большом расстоянии от диполя напряженность электрического поля диполя обратно пропорциональна кубу расстояния.

 

3. Теорема Остроградского-Гаусса.

Определим поток напряженности поля электрических зарядов q1, q2, … qn через некоторую замкнутую поверхность, окружающую эти заряды. Поток будем считать отрицательным, если он направлен внутрь поверхности, в противном случае – положительным

Рассмотрим сначала случай сферической поверхности радиусом R, окружающей один заряд q, находящийся в центре сферы. Согласно (4) напряженность поля на всей сфере одинакова и равна

. (8)

Силовые линии направлены по радиусам, т.е. перпендикулярно поверхности сферы. Это дает возможность применить для расчета потока напряженности N формулу

(9)

 

 

где - площадь сферической поверхности.

Окружим теперь сферу произвольной замкнутой поверхностью. Каждая силовая линия, пронизывающая сферу, пронижет и эту поверхность. Следовательно, формула (9) справедлива не только для сферы, но и для любой замкнутой поверхности.

В случае произвольной поверхности, окружающей n зарядов, поток напряженности через нее равен сумме потоков, создаваемых каждым из зарядов:

.

Таким образом, поток напряженности, пронизывающий любую замкнутую поверхность, окружающую электрические заряды, пропорционален алгебраической сумме окруженных зарядов.

Это положение называется теоремой Остроградского-Гаусса.



Дата добавления: 2017-11-21; просмотров: 1220;


Поиск по сайту:

Воспользовавшись поиском можно найти нужную информацию на сайте.

Поделитесь с друзьями:

Считаете данную информацию полезной, тогда расскажите друзьям в соц. сетях.
Poznayka.org - Познайка.Орг - 2016-2024 год. Материал предоставляется для ознакомительных и учебных целей.
Генерация страницы за: 0.011 сек.