Биологические свойства почв
В почве находится множество микроорганизмов и более крупных представителей фауны и грибной флоры, которые активно влияют на протекание почвенных процессов, в свою очередь влияющих на рост и развитие древесных растений. Достаточно отметить, что только микроорганизмов насчитывается десятки тысяч экземпляров в 1 г абсолютно сухого вещества лесных подстилок. Так, подстилка сосны, по данным И. С. Мелехова (1980), содержит 35 тыс. микроорганизмов, ели — 44 тыс., дуба— 84 тыс., лиственницы — 186 тыс., а березы — 241 тыс. микроорганизмов в 1 г абсолютно сухого вещества.
Из наиболее значительных факторов биологии почв следует отметить образование гумуса, а также функционирование ризосферы — клубеньковых бактерий и микоризы.
Гумус — результат совокупной многосторонней деятельности микробов. При вымывании продуктов разложения из подстилки в минеральную часть почвы появляются гигантские молекулы гумусовых соединений — гуминовых кислот, гумино-фульвокислот и других составных частей перегноя (при содержании гумуса более 8 % в верхнем минеральном горизонте последний называют перегнойным). Гуминовые кислоты могут быть свободны или связаны с подвижными формами полутораокисей (К2О, Р2О5 CaO, MgO и др.). Химическая формула свободного гумуса (перегноя) еще не определена. Совокупная же формула представляется следующей:
С75Н33 017 H3 (СООН)3 (ОН)12 (СО2)2 .
Как видно, основную долю составляет углерод, поэтому путем повышения плодородия почвы (гумусообразованием) можно частично связывать опасный для жизнедеятельности человека углекислый газ.
Гумус почвы является источником питательных элементов для растений благодаря своей высокой обменной поглотительной способности и возможности минерализоваться до простейших подвижных форм питания (А. С, Тихонов, Н. М. Набатов, 1995).
Ризосфера — это часть почвы, непосредственно соприкасающаяся с корнями, обусловливающими развитие микрофлоры. Это тонкий слой почвы вокруг корней, равный средней длине корневого волоска (3—4 мм). В ризосфере для развития микроорганизмов складываются благоприятные условия: повышенное содержание питательных и энергетических веществ в связи с корневым отпадом, а также выделения живых корней, состоящие из минеральных и органических соединений. Так, корни дуба, ясеня, сосны, лиственницы и некоторых других пород способны выделять фосфор, калий, аммиачный азот, кальций, магний (И. С. Мелехов, 1980). В корневых выделениях содержатся также разные ферменты.
Некоторые виды бактерий, прежде всего клубеньковые, образующиеся на корнях ряда растений, усваивают азот свободного воздуха. К таким растениям относятся бобовые (в том числе акация белая, ракитник, акация желтая, акация песчаная, люпин многолетний), а также все виды ольхи и казуарины. Интересно, что исследованиями в Петрозаводском государственном университете (А.С. Лантратова) показано, что на корнях ольхи клейкой обитают не клубеньковые бактерии, а грибы из класса актиномицетов. Во всяком случае, присутствие этих микроорганизмов желательно для обогащения почв.
Следует, однако, заметить, что корневые выделения не всегда благоприятны для микроорганизмов, так как они бывают и токсичными для них (например, фитонциды). Как и при создании смешанных насаждений, необходимо учитывать аллелопатическое взаимовлияние древесных пород.
Микориза, или грибокорень, — симбиоз мицелия гриба и корней высшего растения. Микоризу могут образовывать некоторые зигомицеты, аскомицеты (трюфелевые) и, главным образом, базидиальные грибы (агариковые и болетовые). Различают микоризу эктотрофную, при которой гриб оплетает корень, оставаясь на его поверхности (микориза многих базидиальных грибов — болет, сыроежка, паутинник и др. — с лесными деревьями), и эндотрофную, когда гриб проникает внутрь корня (микоризы микроскопических грибов из класса несовершенных с растениями семейств орхидных и вересковых) (В. И. Шубин, 1990).
Микоризу рассматривают либо как мутуалистический (от лат. mutuus— взаимный) симбиоз (от греч. сгшбиозис — совместная жизнь), от которого выгоду получают и гриб и растение, либо как ограниченный паразитизм. Грибы-микоризообразователи, вероятно, разлагают некоторые недоступные растению органические соединения почвы, способствуют усвоению фосфатов, соединений азота, вырабатывают вещества типа витаминов и активаторов роста, а сами используют вещества (возможно, углеводы), извлекаемые ими из корня растения.
На территории таежной зоны Европейского Севера России выявлено 473 вида и формы макромицетов (шляпочных грибов), из них, по данным В. И. Шубина (1990), 254 являются микоризообразователями у лесообразующих древесных пород. Микоризные грибы относятся к 51 роду, 22 семействам, 8 порядкам и 3 классам: Ascomycetes, Basidiomycetes и Gasteromycetes. Самый представительный класс — Basydiomycetes, включает 95,7 % общего числа видов. По степени участия в общей численности выделяют роды Cortinarius (29,2%), Lactarius (18,3%), Russula (16,8 %) и Tricholoma (12,9 %).
У разных древесных пород известны свои микоризообразователи. Так, у ели — подберезовик, рыжик, горькуша, мухомор, сыроежка жгучеедкая и др. Эти базидиомицеты образуют эктотрофную микоризу в виде плотного чехла на неопробковевших корнях с внедрением гиф между клетками коры (сеть Гартига). Вместо корневых волосков образуется разветвленный в верхних слоях почвы мицелий. С увеличением глубины микоризность падает и глубинные корни деревьев поглощают питательные вещества через корневые волоски.
К микотрофным породам относятся и другие хвойные — сосна обыкновенная, сосна сибирская кедровая, пихта сибирская, а также широколиственные — дуб черешчатый, бук лесной, граб обыкновенный и др.
Слабомикотрофными являются береза повислая, тополь, осина, липа мелколистная, ива, вяз, клен остролистный и др.
Эктотрофная микориза не возникает на корнях ясеня обыкновенного, акации белой, гледичии трехколючковой, саксаула, крушины и других видов и родов. В их корнях возможно появление эндотрофной микоризы, образуемой фикомицетами (низшие грибы —Phycomycetes).
Дата добавления: 2017-09-01; просмотров: 1734;